File size: 10,064 Bytes
610b4ec d5202ef 610b4ec d5202ef 610b4ec d5202ef 610b4ec ebe1617 d5202ef 610b4ec d5202ef 9e0bbe3 610b4ec d5202ef 610b4ec d5202ef 610b4ec d5202ef 9e0bbe3 d5202ef 610b4ec ebe1617 d5202ef ebe1617 d5202ef ebe1617 d5202ef 610b4ec d5202ef 610b4ec d5202ef 610b4ec d5202ef 610b4ec d5202ef 610b4ec d5202ef 610b4ec ebe1617 d5202ef ebe1617 d5202ef ebe1617 d5202ef 610b4ec ebe1617 d5202ef 610b4ec d5202ef ebe1617 d5202ef 610b4ec ebe1617 d5202ef 610b4ec 9e0bbe3 d5202ef 9e0bbe3 610b4ec ebe1617 610b4ec ebe1617 610b4ec d5202ef 610b4ec 9e0bbe3 610b4ec 9e0bbe3 610b4ec 9e0bbe3 610b4ec 9e0bbe3 610b4ec 9e0bbe3 610b4ec 9e0bbe3 610b4ec 9e0bbe3 610b4ec 9e0bbe3 610b4ec ebe1617 610b4ec ebe1617 610b4ec d5202ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
import time
import threading
import torch
import gradio as gr
from datetime import datetime
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
Trainer,
TrainingArguments,
DataCollatorForLanguageModeling
)
from datasets import load_dataset
# ============ CONFIGURATION ============
# We load "gpt2" as the base to fix the "Unrecognized model" error.
# We save to YOUR repo: "himu1780/ai-python-model"
BASE_MODEL = "gpt2"
MODEL_REPO = "himu1780/ai-python-model"
DATASET_NAME = "iamtarun/python_code_instructions_18k_alpaca"
BATCH_SIZE = 4
GRADIENT_ACCUMULATION = 4
LEARNING_RATE = 2e-4
MAX_STEPS_PER_SESSION = 1000
LOGGING_STEPS = 10
SAVE_STEPS = 500
WAIT_BETWEEN_SESSIONS = 10
CONTINUOUS_TRAINING = True
# Global Status Dictionary
training_status = {
"is_training": False,
"message": "π€ Idle",
"session_count": 0,
"current_step": 0,
"total_loss": 0.0,
"last_save": "None",
"last_error": "",
"start_time": None
}
stop_requested = False
# ============ CUSTOM TRAINER (FIXED) ============
class StatusTrainer(Trainer):
def log(self, logs, start_time=None): # <--- FIXED: Added start_time
"""
Overriding log to update global status for Gradio UI.
"""
# Update global status
if "loss" in logs:
training_status["total_loss"] = logs["loss"]
if "step" in logs:
training_status["current_step"] = logs["step"]
# Call parent method properly with start_time
super().log(logs, start_time=start_time)
# ============ MEMORY CLEANUP ============
def cleanup_memory():
if torch.cuda.is_available():
torch.cuda.empty_cache()
import gc
gc.collect()
# ============ TRAINING SESSION ============
def run_training_session():
global training_status
print(f"[INFO] Starting Session {training_status['session_count'] + 1}")
model = None
trainer = None
try:
# 1. Load Tokenizer (Use BASE_MODEL to avoid 'Unrecognized model' error)
print(f"[INFO] Loading tokenizer from {BASE_MODEL}...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# 2. Load Model (Use BASE_MODEL to avoid 'Unrecognized model' error)
print(f"[INFO] Loading model from {BASE_MODEL}...")
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=True
)
# 3. Load Dataset
print(f"[INFO] Loading dataset {DATASET_NAME}...")
dataset = load_dataset(DATASET_NAME, split="train")
def tokenize_function(examples):
# Simple text tokenization - adjust column name if needed
text_column = "text" if "text" in examples else list(examples.keys())[0]
return tokenizer(examples[text_column], truncation=True, padding="max_length", max_length=512)
print("[INFO] Tokenizing dataset...")
tokenized_datasets = dataset.map(tokenize_function, batched=True)
train_dataset = tokenized_datasets
if len(train_dataset) == 0:
print("β Empty dataset!")
return False
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
)
# 4. Configure Training
training_args = TrainingArguments(
output_dir="./temp_checkpoints",
overwrite_output_dir=True,
per_device_train_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION,
learning_rate=LEARNING_RATE,
warmup_steps=100,
weight_decay=0.01,
logging_steps=LOGGING_STEPS,
save_steps=SAVE_STEPS,
save_total_limit=1,
push_to_hub=True, # This ensures we still PUSH to your repo
hub_model_id=MODEL_REPO, # Your repo: himu1780/ai-python-model
hub_strategy="every_save",
report_to="none",
max_steps=MAX_STEPS_PER_SESSION,
fp16=torch.cuda.is_available(),
dataloader_num_workers=0,
remove_unused_columns=True,
)
trainer = StatusTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
processing_class=tokenizer,
)
training_status["message"] = "π Training in progress..."
print("[INFO] Starting training...")
trainer.train()
print("[INFO] Pushing to hub...")
trainer.push_to_hub()
training_status["session_count"] += 1
training_status["message"] = f"β
Session {training_status['session_count']} completed!"
return True
except KeyboardInterrupt:
training_status["message"] = "βΉοΈ Training stopped by user"
return False
except Exception as e:
training_status["message"] = f"β Error: {str(e)[:100]}"
training_status["last_error"] = str(e)
print(f"[ERROR] Training failed: {e}")
import traceback
traceback.print_exc()
return False
finally:
if model is not None:
del model
if trainer is not None:
del trainer
cleanup_memory()
# ============ MAIN TRAINING LOOP ============
def start_training():
global training_status, stop_requested
if training_status["is_training"]:
return "Training already in progress!"
training_status["is_training"] = True
training_status["start_time"] = datetime.now()
stop_requested = False
while not stop_requested:
training_status["message"] = f"π Starting session {training_status['session_count'] + 1}..."
success = run_training_session()
if stop_requested:
break
if not CONTINUOUS_TRAINING:
break
if success:
training_status["message"] = f"β³ Waiting {WAIT_BETWEEN_SESSIONS}s before next session..."
time.sleep(WAIT_BETWEEN_SESSIONS)
else:
training_status["message"] = "β οΈ Session failed, retrying in 60s..."
time.sleep(60)
training_status["is_training"] = False
stop_requested = False
training_status["message"] = f"β
Training finished! Total sessions: {training_status['session_count']}"
return training_status["message"]
# ============ GRADIO INTERFACE ============
def get_status():
elapsed = ""
if training_status["start_time"]:
delta = datetime.now() - training_status["start_time"]
hours, remainder = divmod(int(delta.total_seconds()), 3600)
minutes, seconds = divmod(remainder, 60)
elapsed = f"{hours}h {minutes}m {seconds}s"
if training_status["total_loss"]:
loss_str = f"{training_status['total_loss']:.4f}"
else:
loss_str = "N/A"
state_str = "π’ Training" if training_status["is_training"] else "π΄ Stopped"
continuous_str = "β
Enabled" if CONTINUOUS_TRAINING else "β Disabled"
elapsed_str = elapsed if elapsed else "N/A"
effective_batch = BATCH_SIZE * GRADIENT_ACCUMULATION
error_str = training_status["last_error"][:100] if training_status["last_error"] else "None"
return f"""
## π€ AI Python Model Trainer
### Status
| Item | Value |
|------|-------|
| **State** | {state_str} |
| **Message** | {training_status["message"]} |
| **Sessions Completed** | {training_status["session_count"]} |
| **Last Error** | {error_str} |
### Progress
| Metric | Value |
|--------|-------|
| **Current Step** | {training_status["current_step"]:,} / {MAX_STEPS_PER_SESSION:,} |
| **Current Loss** | {loss_str} |
| **Last Checkpoint** | {training_status["last_save"]} |
| **Elapsed Time** | {elapsed_str} |
### Configuration
| Setting | Value |
|---------|-------|
| **Base Model** | {BASE_MODEL} |
| **Target Repo** | [{MODEL_REPO}](https://huggingface.co/{MODEL_REPO}) |
| **Continuous Mode** | {continuous_str} |
| **Batch Size** | {BATCH_SIZE} (effective: {effective_batch}) |
"""
def start_training_async():
if training_status["is_training"]:
return "β οΈ Training already in progress!"
thread = threading.Thread(target=start_training, daemon=True)
thread.start()
return "π Training started in background!"
def stop_training():
global stop_requested
if not training_status["is_training"]:
return "β οΈ No training in progress"
stop_requested = True
training_status["message"] = "βΉοΈ Stopping after current step..."
return "βΉοΈ Stop requested"
# ============ AUTO-START ============
def auto_start():
time.sleep(10)
while True:
if not training_status["is_training"] and not stop_requested:
print("[INFO] Auto-starting training session...")
start_training()
time.sleep(WAIT_BETWEEN_SESSIONS)
auto_thread = threading.Thread(target=auto_start, daemon=True)
auto_thread.start()
# ============ GRADIO APP ============
with gr.Blocks(title="AI Python Trainer") as demo:
gr.Markdown("# π AI Python Code Model Trainer")
gr.Markdown(f"**Continuous training** from `{BASE_MODEL}` -> `{MODEL_REPO}`")
status_display = gr.Markdown(get_status)
with gr.Row():
start_btn = gr.Button("βΆοΈ Start Training", variant="primary")
stop_btn = gr.Button("βΉοΈ Stop Training", variant="stop")
refresh_btn = gr.Button("π Refresh Status")
output = gr.Textbox(label="Output", interactive=False)
start_btn.click(start_training_async, outputs=output)
stop_btn.click(stop_training, outputs=output)
refresh_btn.click(get_status, outputs=status_display)
demo.launch()
|