File size: 11,712 Bytes
9679fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
GraphRAG Builder with Community Detection and Hierarchical Summarization
Implements Microsoft GraphRAG approach for knowledge graphs
"""

import json
import networkx as nx
import numpy as np
from typing import List, Dict, Set, Tuple
from collections import defaultdict, Counter
from tqdm import tqdm
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pickle


class GraphRAGBuilder:
    """Build GraphRAG with community detection and hierarchical summaries"""

    def __init__(self, chunks_file: str, output_dir: str = "dataset/wikipedia_ireland"):
        self.chunks_file = chunks_file
        self.output_dir = output_dir
        self.graph = nx.Graph()
        self.entity_graph = nx.DiGraph()
        self.chunks = []
        self.entity_to_chunks = defaultdict(list)
        self.chunk_to_entities = defaultdict(list)

    def load_chunks(self):
        """Load processed chunks"""
        print(f"[INFO] Loading chunks from {self.chunks_file}")
        with open(self.chunks_file, 'r', encoding='utf-8') as f:
            self.chunks = json.load(f)
        print(f"[SUCCESS] Loaded {len(self.chunks)} chunks")

    def build_entity_graph(self):
        """Build graph from entities across chunks"""
        print("[INFO] Building entity graph from chunks...")

        # Extract all entities and their co-occurrences
        for chunk_idx, chunk in enumerate(tqdm(self.chunks, desc="Processing chunks")):
            chunk_id = chunk['chunk_id']
            entities = chunk.get('entities', [])

            # Track which chunks contain which entities
            for entity in entities:
                entity_key = f"{entity['text']}|{entity['label']}"
                self.entity_to_chunks[entity_key].append(chunk_id)
                self.chunk_to_entities[chunk_id].append(entity_key)

                # Add entity as node if not exists
                if not self.entity_graph.has_node(entity_key):
                    self.entity_graph.add_node(
                        entity_key,
                        text=entity['text'],
                        label=entity['label'],
                        chunk_count=0
                    )

                # Update chunk count
                self.entity_graph.nodes[entity_key]['chunk_count'] += 1

            # Create edges between co-occurring entities in same chunk
            for i, entity1 in enumerate(entities):
                for entity2 in entities[i+1:]:
                    key1 = f"{entity1['text']}|{entity1['label']}"
                    key2 = f"{entity2['text']}|{entity2['label']}"

                    if self.entity_graph.has_edge(key1, key2):
                        self.entity_graph[key1][key2]['weight'] += 1
                    else:
                        self.entity_graph.add_edge(key1, key2, weight=1)

        print(f"[SUCCESS] Entity graph: {self.entity_graph.number_of_nodes()} nodes, "
              f"{self.entity_graph.number_of_edges()} edges")

    def build_semantic_chunk_graph(self, similarity_threshold: float = 0.3):
        """Build graph of semantically similar chunks"""
        print("[INFO] Building semantic similarity graph...")

        # Extract chunk texts
        chunk_texts = [chunk['text'] for chunk in self.chunks]
        chunk_ids = [chunk['chunk_id'] for chunk in self.chunks]

        # Compute TF-IDF vectors
        vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
        tfidf_matrix = vectorizer.fit_transform(chunk_texts)

        # Compute pairwise cosine similarity (in batches to save memory)
        batch_size = 500
        for i in tqdm(range(0, len(chunk_texts), batch_size), desc="Computing similarity"):
            end_i = min(i + batch_size, len(chunk_texts))
            batch_similarities = cosine_similarity(tfidf_matrix[i:end_i], tfidf_matrix)

            for local_idx, chunk_idx in enumerate(range(i, end_i)):
                chunk_id = chunk_ids[chunk_idx]

                # Add chunk as node
                if not self.graph.has_node(chunk_id):
                    self.graph.add_node(
                        chunk_id,
                        text=chunk_texts[chunk_idx],
                        source_title=self.chunks[chunk_idx]['source_title'],
                        source_url=self.chunks[chunk_idx]['source_url'],
                        section=self.chunks[chunk_idx]['section'],
                        word_count=self.chunks[chunk_idx]['word_count']
                    )

                # Add edges to similar chunks
                for other_idx, similarity in enumerate(batch_similarities[local_idx]):
                    if chunk_idx != other_idx and similarity > similarity_threshold:
                        other_chunk_id = chunk_ids[other_idx]
                        if not self.graph.has_edge(chunk_id, other_chunk_id):
                            self.graph.add_edge(chunk_id, other_chunk_id, weight=float(similarity))

        print(f"[SUCCESS] Chunk graph: {self.graph.number_of_nodes()} nodes, "
              f"{self.graph.number_of_edges()} edges")

    def detect_communities(self, resolution: float = 1.0) -> Dict[str, int]:
        """Detect communities using Louvain algorithm"""
        print("[INFO] Detecting communities with Louvain algorithm...")

        from networkx.algorithms import community as nx_comm

        # Use Louvain for community detection
        communities = nx_comm.louvain_communities(self.graph, resolution=resolution, seed=42)

        # Create node to community mapping
        node_to_community = {}
        for comm_id, community_nodes in enumerate(communities):
            for node in community_nodes:
                node_to_community[node] = comm_id

        print(f"[SUCCESS] Detected {len(communities)} communities")

        # Add community attribute to nodes
        for node, comm_id in node_to_community.items():
            self.graph.nodes[node]['community'] = comm_id

        return node_to_community

    def generate_community_summaries(self, node_to_community: Dict[str, int], max_chunks_per_summary: int = 20) -> Dict[int, Dict]:
        """Generate hierarchical summaries for each community"""
        print("[INFO] Generating community summaries...")

        communities = defaultdict(list)
        for node, comm_id in node_to_community.items():
            communities[comm_id].append(node)

        community_summaries = {}

        for comm_id, chunk_ids in tqdm(communities.items(), desc="Summarizing communities"):
            # Gather all text from chunks in this community (limit to avoid huge summaries)
            sample_chunk_ids = chunk_ids[:max_chunks_per_summary]
            chunk_texts = []
            sources = set()

            for chunk_id in sample_chunk_ids:
                chunk_data = self.graph.nodes.get(chunk_id, {})
                chunk_texts.append(chunk_data.get('text', ''))
                sources.add(chunk_data.get('source_title', 'Unknown'))

            # Extract most common entities in this community
            community_entities = []
            for chunk_id in chunk_ids:
                community_entities.extend(self.chunk_to_entities.get(chunk_id, []))

            entity_counter = Counter(community_entities)
            top_entities = entity_counter.most_common(20)

            # Generate summary metadata (would use LLM for actual summary in production)
            combined_text = " ".join(chunk_texts)
            summary = {
                "community_id": comm_id,
                "num_chunks": len(chunk_ids),
                "num_sources": len(sources),
                "sources": list(sources)[:10],
                "top_entities": [{"entity": ent[0].split('|')[0], "count": ent[1]} for ent in top_entities],
                "combined_text_sample": combined_text[:2000],  # First 2000 chars as preview
                "total_text_length": len(combined_text),
                "chunk_ids": chunk_ids[:100]  # Limit stored chunk IDs
            }

            community_summaries[comm_id] = summary

        print(f"[SUCCESS] Generated {len(community_summaries)} community summaries")
        return community_summaries

    def build_hierarchical_index(self) -> Dict:
        """Build complete hierarchical index for GraphRAG"""
        print("=" * 80)
        print("BUILDING GRAPHRAG HIERARCHICAL INDEX")
        print("=" * 80)

        # Step 1: Load chunks
        self.load_chunks()

        # Step 2: Build entity graph
        self.build_entity_graph()

        # Step 3: Build semantic chunk graph
        self.build_semantic_chunk_graph(similarity_threshold=0.25)

        # Step 4: Detect communities
        node_to_community = self.detect_communities(resolution=1.0)

        # Step 5: Generate community summaries
        community_summaries = self.generate_community_summaries(node_to_community)

        # Step 6: Build complete index
        graphrag_index = {
            "metadata": {
                "total_chunks": len(self.chunks),
                "total_entities": self.entity_graph.number_of_nodes(),
                "total_communities": len(set(node_to_community.values())),
                "chunk_graph_edges": self.graph.number_of_edges(),
                "entity_graph_edges": self.entity_graph.number_of_edges()
            },
            "communities": community_summaries,
            "entity_to_chunks": dict(self.entity_to_chunks),
            "chunk_to_entities": dict(self.chunk_to_entities),
            "node_to_community": node_to_community
        }

        return graphrag_index

    def save_graphrag_index(self, graphrag_index: Dict):
        """Save GraphRAG index and graphs"""
        print("[INFO] Saving GraphRAG index...")

        # Save main index as JSON
        index_path = f"{self.output_dir}/graphrag_index.json"
        with open(index_path, 'w', encoding='utf-8') as f:
            json.dump(graphrag_index, f, ensure_ascii=False, indent=2)
        print(f"[SUCCESS] Saved GraphRAG index to {index_path}")

        # Save graphs as pickle (more efficient for networkx graphs)
        graphs_path = f"{self.output_dir}/graphrag_graphs.pkl"
        with open(graphs_path, 'wb') as f:
            pickle.dump({
                'chunk_graph': self.graph,
                'entity_graph': self.entity_graph
            }, f)
        print(f"[SUCCESS] Saved graphs to {graphs_path}")

        # Save human-readable statistics
        stats = {
            "total_chunks": graphrag_index["metadata"]["total_chunks"],
            "total_entities": graphrag_index["metadata"]["total_entities"],
            "total_communities": graphrag_index["metadata"]["total_communities"],
            "communities": []
        }

        for comm_id, comm_data in graphrag_index["communities"].items():
            stats["communities"].append({
                "id": comm_id,
                "num_chunks": comm_data["num_chunks"],
                "num_sources": comm_data["num_sources"],
                "top_sources": comm_data["sources"][:5],
                "top_entities": [e["entity"] for e in comm_data["top_entities"][:10]]
            })

        stats_path = f"{self.output_dir}/graphrag_stats.json"
        with open(stats_path, 'w') as f:
            json.dump(stats, f, indent=2)
        print(f"[SUCCESS] Saved statistics to {stats_path}")

        print("=" * 80)
        print("GRAPHRAG INDEX BUILDING COMPLETE!")
        print("=" * 80)


if __name__ == "__main__":
    builder = GraphRAGBuilder(
        chunks_file="dataset/wikipedia_ireland/chunks.json"
    )
    graphrag_index = builder.build_hierarchical_index()
    builder.save_graphrag_index(graphrag_index)