File size: 9,473 Bytes
9679fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
Advanced Text Chunking and Preprocessing Pipeline
Intelligently chunks Wikipedia articles while preserving context and semantic coherence.
"""

import re
import json
from typing import List, Dict, Tuple
from dataclasses import dataclass
import spacy
from tqdm import tqdm


@dataclass
class TextChunk:
    """Represents a chunk of text with metadata"""
    chunk_id: str
    text: str
    source_title: str
    source_url: str
    section: str
    chunk_index: int
    total_chunks: int
    char_start: int
    char_end: int
    word_count: int
    has_entities: bool = False
    entities: List[Dict] = None


class AdvancedTextProcessor:
    """Advanced text processing with intelligent chunking"""

    def __init__(self, chunk_size: int = 512, chunk_overlap: int = 128, spacy_model: str = "en_core_web_sm"):
        self.chunk_size = chunk_size  # tokens
        self.chunk_overlap = chunk_overlap  # tokens

        # Load spaCy model for sentence segmentation and entity recognition
        try:
            self.nlp = spacy.load(spacy_model)
        except OSError:
            print(f"[INFO] Downloading spaCy model: {spacy_model}")
            import subprocess
            subprocess.run(["python", "-m", "spacy", "download", spacy_model])
            self.nlp = spacy.load(spacy_model)

        # Disable unnecessary components for speed
        self.nlp.select_pipes(enable=["tok2vec", "tagger", "parser", "ner"])

    def clean_text(self, text: str) -> str:
        """Clean Wikipedia text"""
        if not text:
            return ""

        # Remove Wikipedia markup
        text = re.sub(r'\{\{[^}]+\}\}', '', text)  # Remove templates
        text = re.sub(r'\[\[File:[^\]]+\]\]', '', text)  # Remove file links
        text = re.sub(r'\[\[Image:[^\]]+\]\]', '', text)  # Remove image links

        # Clean internal links but keep text
        text = re.sub(r'\[\[([^|\]]+)\|([^\]]+)\]\]', r'\2', text)  # [[Link|Text]] -> Text
        text = re.sub(r'\[\[([^\]]+)\]\]', r'\1', text)  # [[Link]] -> Link

        # Remove external links
        text = re.sub(r'\[http[s]?://[^\]]+\]', '', text)

        # Remove citations
        text = re.sub(r'<ref[^>]*>.*?</ref>', '', text, flags=re.DOTALL)
        text = re.sub(r'<ref[^>]*/?>', '', text)

        # Remove HTML tags
        text = re.sub(r'<[^>]+>', '', text)

        # Normalize whitespace
        text = re.sub(r'\s+', ' ', text)
        text = text.strip()

        return text

    def chunk_by_sentences(self, text: str, source_title: str, source_url: str, section: str = "main") -> List[TextChunk]:
        """Chunk text by sentences with overlap"""
        if not text:
            return []

        # Clean text first
        text = self.clean_text(text)

        # Process with spaCy
        doc = self.nlp(text)
        sentences = list(doc.sents)

        if not sentences:
            return []

        chunks = []
        current_chunk_tokens = []
        current_chunk_start = 0
        chunk_index = 0

        for sent_idx, sent in enumerate(sentences):
            sent_tokens = [token.text for token in sent]

            # If adding this sentence exceeds chunk size, save current chunk
            if len(current_chunk_tokens) + len(sent_tokens) > self.chunk_size and current_chunk_tokens:
                # Create chunk
                chunk_text = " ".join(current_chunk_tokens)
                chunk = TextChunk(
                    chunk_id=f"{source_title.replace(' ', '_')}_{chunk_index}",
                    text=chunk_text,
                    source_title=source_title,
                    source_url=source_url,
                    section=section,
                    chunk_index=chunk_index,
                    total_chunks=0,  # Will update later
                    char_start=current_chunk_start,
                    char_end=current_chunk_start + len(chunk_text),
                    word_count=len(current_chunk_tokens)
                )
                chunks.append(chunk)
                chunk_index += 1

                # Create overlap by keeping last N tokens
                overlap_tokens = current_chunk_tokens[-self.chunk_overlap:] if len(current_chunk_tokens) > self.chunk_overlap else []
                current_chunk_tokens = overlap_tokens + sent_tokens
                current_chunk_start = current_chunk_start + len(chunk_text) - len(" ".join(overlap_tokens))
            else:
                current_chunk_tokens.extend(sent_tokens)

        # Add final chunk
        if current_chunk_tokens:
            chunk_text = " ".join(current_chunk_tokens)
            chunk = TextChunk(
                chunk_id=f"{source_title.replace(' ', '_')}_{chunk_index}",
                text=chunk_text,
                source_title=source_title,
                source_url=source_url,
                section=section,
                chunk_index=chunk_index,
                total_chunks=0,
                char_start=current_chunk_start,
                char_end=current_chunk_start + len(chunk_text),
                word_count=len(current_chunk_tokens)
            )
            chunks.append(chunk)

        # Update total_chunks
        for chunk in chunks:
            chunk.total_chunks = len(chunks)

        return chunks

    def extract_entities(self, chunk: TextChunk) -> TextChunk:
        """Extract named entities from chunk"""
        doc = self.nlp(chunk.text)
        entities = []

        for ent in doc.ents:
            entities.append({
                "text": ent.text,
                "label": ent.label_,
                "start": ent.start_char,
                "end": ent.end_char
            })

        chunk.has_entities = len(entities) > 0
        chunk.entities = entities
        return chunk

    def process_article(self, article: Dict) -> List[TextChunk]:
        """Process a single article into chunks"""
        chunks = []

        # Process main summary
        if article.get("summary"):
            summary_chunks = self.chunk_by_sentences(
                article["summary"],
                article["title"],
                article["url"],
                section="summary"
            )
            chunks.extend(summary_chunks)

        # Process full text (skip summary part to avoid duplication)
        if article.get("full_text"):
            full_text = article["full_text"]
            # Remove summary from full text if it's at the beginning
            if article.get("summary") and full_text.startswith(article["summary"][:100]):
                full_text = full_text[len(article["summary"]):]

            main_chunks = self.chunk_by_sentences(
                full_text,
                article["title"],
                article["url"],
                section="full_article"
            )
            chunks.extend(main_chunks)

        # Extract entities for all chunks
        chunks = [self.extract_entities(chunk) for chunk in chunks]

        return chunks

    def process_all_articles(self, articles: List[Dict]) -> List[Dict]:
        """Process all articles into chunks"""
        print(f"[INFO] Processing {len(articles)} articles into chunks...")
        all_chunks = []

        for article in tqdm(articles, desc="Processing articles"):
            chunks = self.process_article(article)
            all_chunks.extend(chunks)

        print(f"[SUCCESS] Created {len(all_chunks)} chunks from {len(articles)} articles")

        # Convert to dict for JSON serialization
        chunks_dict = []
        for chunk in all_chunks:
            chunk_dict = {
                "chunk_id": chunk.chunk_id,
                "text": chunk.text,
                "source_title": chunk.source_title,
                "source_url": chunk.source_url,
                "section": chunk.section,
                "chunk_index": chunk.chunk_index,
                "total_chunks": chunk.total_chunks,
                "char_start": chunk.char_start,
                "char_end": chunk.char_end,
                "word_count": chunk.word_count,
                "has_entities": chunk.has_entities,
                "entities": chunk.entities if chunk.entities else []
            }
            chunks_dict.append(chunk_dict)

        return chunks_dict

    def save_chunks(self, chunks: List[Dict], output_path: str = "dataset/wikipedia_ireland/chunks.json"):
        """Save chunks to JSON file"""
        with open(output_path, 'w', encoding='utf-8') as f:
            json.dump(chunks, f, ensure_ascii=False, indent=2)

        # Save statistics
        stats = {
            "total_chunks": len(chunks),
            "avg_chunk_length": sum(c["word_count"] for c in chunks) / len(chunks),
            "chunks_with_entities": sum(1 for c in chunks if c["has_entities"]),
            "total_entities": sum(len(c["entities"]) for c in chunks)
        }

        stats_path = output_path.replace("chunks.json", "chunk_stats.json")
        with open(stats_path, 'w') as f:
            json.dump(stats, f, indent=2)

        print(f"[SUCCESS] Saved {len(chunks)} chunks to {output_path}")
        print(f"[INFO] Statistics saved to {stats_path}")

        return output_path


if __name__ == "__main__":
    # Test with sample articles
    with open("dataset/wikipedia_ireland/ireland_articles.json", 'r') as f:
        articles = json.load(f)

    processor = AdvancedTextProcessor(chunk_size=512, chunk_overlap=128)
    chunks = processor.process_all_articles(articles)
    processor.save_chunks(chunks)