Spaces:
Build error
Build error
| import warnings | |
| import itertools | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import PeftAdapterMixin | |
| from diffusers.loaders.single_file_model import FromOriginalModelMixin | |
| from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from ..attention_processor import OmniGen2AttnProcessorFlash2Varlen | |
| from .repo import OmniGen2RotaryPosEmbed | |
| from .block_lumina2 import LuminaLayerNormContinuous, LuminaRMSNormZero, LuminaFeedForward, Lumina2CombinedTimestepCaptionEmbedding | |
| try: | |
| from ...ops.triton.layer_norm import RMSNorm as FusedRMSNorm | |
| FUSEDRMSNORM_AVALIBLE = True | |
| except ImportError: | |
| FUSEDRMSNORM_AVALIBLE = False | |
| warnings.warn("Cannot import FusedRMSNorm, falling back to vanilla implementation") | |
| logger = logging.get_logger(__name__) | |
| class OmniGen2TransformerBlock(nn.Module): | |
| """ | |
| Transformer block for OmniGen2 model. | |
| This block implements a transformer layer with: | |
| - Multi-head attention with flash attention | |
| - Feed-forward network with SwiGLU activation | |
| - RMS normalization | |
| - Optional modulation for conditional generation | |
| Args: | |
| dim: Dimension of the input and output tensors | |
| num_attention_heads: Number of attention heads | |
| num_kv_heads: Number of key-value heads | |
| multiple_of: Multiple of which the hidden dimension should be | |
| ffn_dim_multiplier: Multiplier for the feed-forward network dimension | |
| norm_eps: Epsilon value for normalization layers | |
| modulation: Whether to use modulation for conditional generation | |
| use_fused_rms_norm: Whether to use fused RMS normalization | |
| use_fused_swiglu: Whether to use fused SwiGLU activation | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| num_kv_heads: int, | |
| multiple_of: int, | |
| ffn_dim_multiplier: float, | |
| norm_eps: float, | |
| modulation: bool = True, | |
| use_fused_rms_norm: bool = True, | |
| use_fused_swiglu: bool = True, | |
| ) -> None: | |
| """Initialize the transformer block.""" | |
| super().__init__() | |
| self.head_dim = dim // num_attention_heads | |
| self.modulation = modulation | |
| # Initialize attention layer | |
| self.attn = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=None, | |
| dim_head=dim // num_attention_heads, | |
| qk_norm="rms_norm", | |
| heads=num_attention_heads, | |
| kv_heads=num_kv_heads, | |
| eps=1e-5, | |
| bias=False, | |
| out_bias=False, | |
| processor=OmniGen2AttnProcessorFlash2Varlen(), | |
| ) | |
| # Initialize feed-forward network | |
| self.feed_forward = LuminaFeedForward( | |
| dim=dim, | |
| inner_dim=4 * dim, | |
| multiple_of=multiple_of, | |
| ffn_dim_multiplier=ffn_dim_multiplier, | |
| use_fused_swiglu=use_fused_swiglu, | |
| ) | |
| # Initialize normalization layers | |
| if modulation: | |
| self.norm1 = LuminaRMSNormZero( | |
| embedding_dim=dim, | |
| norm_eps=norm_eps, | |
| norm_elementwise_affine=True, | |
| use_fused_rms_norm=use_fused_rms_norm, | |
| ) | |
| else: | |
| if use_fused_rms_norm: | |
| if not FUSEDRMSNORM_AVALIBLE: | |
| raise ImportError("FusedRMSNorm is not available") | |
| self.norm1 = FusedRMSNorm(dim, eps=norm_eps) | |
| else: | |
| self.norm1 = nn.RMSNorm(dim, eps=norm_eps) | |
| if use_fused_rms_norm: | |
| if not FUSEDRMSNORM_AVALIBLE: | |
| raise ImportError("FusedRMSNorm is not available") | |
| self.ffn_norm1 = FusedRMSNorm(dim, eps=norm_eps) | |
| self.norm2 = FusedRMSNorm(dim, eps=norm_eps) | |
| self.ffn_norm2 = FusedRMSNorm(dim, eps=norm_eps) | |
| else: | |
| self.ffn_norm1 = nn.RMSNorm(dim, eps=norm_eps) | |
| self.norm2 = nn.RMSNorm(dim, eps=norm_eps) | |
| self.ffn_norm2 = nn.RMSNorm(dim, eps=norm_eps) | |
| self.initialize_weights() | |
| def initialize_weights(self) -> None: | |
| """ | |
| Initialize the weights of the transformer block. | |
| Uses Xavier uniform initialization for linear layers and zero initialization for biases. | |
| """ | |
| nn.init.xavier_uniform_(self.attn.to_q.weight) | |
| nn.init.xavier_uniform_(self.attn.to_k.weight) | |
| nn.init.xavier_uniform_(self.attn.to_v.weight) | |
| nn.init.xavier_uniform_(self.attn.to_out[0].weight) | |
| nn.init.xavier_uniform_(self.feed_forward.linear_1.weight) | |
| nn.init.xavier_uniform_(self.feed_forward.linear_2.weight) | |
| nn.init.xavier_uniform_(self.feed_forward.linear_3.weight) | |
| if self.modulation: | |
| nn.init.zeros_(self.norm1.linear.weight) | |
| nn.init.zeros_(self.norm1.linear.bias) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| image_rotary_emb: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| """ | |
| Forward pass of the transformer block. | |
| Args: | |
| hidden_states: Input hidden states tensor | |
| attention_mask: Attention mask tensor | |
| image_rotary_emb: Rotary embeddings for image tokens | |
| temb: Optional timestep embedding tensor | |
| Returns: | |
| torch.Tensor: Output hidden states after transformer block processing | |
| """ | |
| if self.modulation: | |
| if temb is None: | |
| raise ValueError("temb must be provided when modulation is enabled") | |
| norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) | |
| attn_output = self.attn( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_hidden_states, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output) | |
| mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) | |
| hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) | |
| else: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| attn_output = self.attn( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_hidden_states, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| hidden_states = hidden_states + self.norm2(attn_output) | |
| mlp_output = self.feed_forward(self.ffn_norm1(hidden_states)) | |
| hidden_states = hidden_states + self.ffn_norm2(mlp_output) | |
| return hidden_states | |
| class OmniGen2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): | |
| """ | |
| OmniGen2 Transformer 2D Model. | |
| A transformer-based diffusion model for image generation with: | |
| - Patch-based image processing | |
| - Rotary position embeddings | |
| - Multi-head attention | |
| - Conditional generation support | |
| Args: | |
| patch_size: Size of image patches | |
| in_channels: Number of input channels | |
| out_channels: Number of output channels (defaults to in_channels) | |
| hidden_size: Size of hidden layers | |
| num_layers: Number of transformer layers | |
| num_refiner_layers: Number of refiner layers | |
| num_attention_heads: Number of attention heads | |
| num_kv_heads: Number of key-value heads | |
| multiple_of: Multiple of which the hidden dimension should be | |
| ffn_dim_multiplier: Multiplier for feed-forward network dimension | |
| norm_eps: Epsilon value for normalization layers | |
| axes_dim_rope: Dimensions for rotary position embeddings | |
| axes_lens: Lengths for rotary position embeddings | |
| text_feat_dim: Dimension of text features | |
| timestep_scale: Scale factor for timestep embeddings | |
| use_fused_rms_norm: Whether to use fused RMS normalization | |
| use_fused_swiglu: Whether to use fused SwiGLU activation | |
| """ | |
| _supports_gradient_checkpointing = True | |
| _no_split_modules = ["Omnigen2TransformerBlock"] | |
| _skip_layerwise_casting_patterns = ["x_embedder", "norm"] | |
| def __init__( | |
| self, | |
| patch_size: int = 2, | |
| in_channels: int = 16, | |
| out_channels: Optional[int] = None, | |
| hidden_size: int = 2304, | |
| num_layers: int = 26, | |
| num_refiner_layers: int = 2, | |
| num_attention_heads: int = 24, | |
| num_kv_heads: int = 8, | |
| multiple_of: int = 256, | |
| ffn_dim_multiplier: Optional[float] = None, | |
| norm_eps: float = 1e-5, | |
| axes_dim_rope: Tuple[int, int, int] = (32, 32, 32), | |
| axes_lens: Tuple[int, int, int] = (300, 512, 512), | |
| text_feat_dim: int = 1024, | |
| timestep_scale: float = 1.0, | |
| use_fused_rms_norm: bool = True, | |
| use_fused_swiglu: bool = True, | |
| ) -> None: | |
| """Initialize the OmniGen2 transformer model.""" | |
| super().__init__() | |
| # Validate configuration | |
| if (hidden_size // num_attention_heads) != sum(axes_dim_rope): | |
| raise ValueError( | |
| f"hidden_size // num_attention_heads ({hidden_size // num_attention_heads}) " | |
| f"must equal sum(axes_dim_rope) ({sum(axes_dim_rope)})" | |
| ) | |
| self.out_channels = out_channels or in_channels | |
| # Initialize embeddings | |
| self.rope_embedder = OmniGen2RotaryPosEmbed( | |
| theta=10000, | |
| axes_dim=axes_dim_rope, | |
| axes_lens=axes_lens, | |
| patch_size=patch_size, | |
| ) | |
| self.x_embedder = nn.Linear( | |
| in_features=patch_size * patch_size * in_channels, | |
| out_features=hidden_size, | |
| ) | |
| self.ref_image_patch_embedder = nn.Linear( | |
| in_features=patch_size * patch_size * in_channels, | |
| out_features=hidden_size, | |
| ) | |
| self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding( | |
| hidden_size=hidden_size, | |
| text_feat_dim=text_feat_dim, | |
| norm_eps=norm_eps, | |
| timestep_scale=timestep_scale, | |
| use_fused_rms_norm=use_fused_rms_norm, | |
| ) | |
| # Initialize transformer blocks | |
| self.noise_refiner = nn.ModuleList([ | |
| OmniGen2TransformerBlock( | |
| hidden_size, | |
| num_attention_heads, | |
| num_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| modulation=True, | |
| use_fused_rms_norm=use_fused_rms_norm, | |
| use_fused_swiglu=use_fused_swiglu, | |
| ) | |
| for _ in range(num_refiner_layers) | |
| ]) | |
| self.ref_image_refiner = nn.ModuleList([ | |
| OmniGen2TransformerBlock( | |
| hidden_size, | |
| num_attention_heads, | |
| num_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| modulation=True, | |
| use_fused_rms_norm=use_fused_rms_norm, | |
| use_fused_swiglu=use_fused_swiglu, | |
| ) | |
| for _ in range(num_refiner_layers) | |
| ]) | |
| self.context_refiner = nn.ModuleList( | |
| [ | |
| OmniGen2TransformerBlock( | |
| hidden_size, | |
| num_attention_heads, | |
| num_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| modulation=False, | |
| use_fused_rms_norm=use_fused_rms_norm, | |
| use_fused_swiglu=use_fused_swiglu | |
| ) | |
| for _ in range(num_refiner_layers) | |
| ] | |
| ) | |
| # 3. Transformer blocks | |
| self.layers = nn.ModuleList( | |
| [ | |
| OmniGen2TransformerBlock( | |
| hidden_size, | |
| num_attention_heads, | |
| num_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| modulation=True, | |
| use_fused_rms_norm=use_fused_rms_norm, | |
| use_fused_swiglu=use_fused_swiglu | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| # 4. Output norm & projection | |
| self.norm_out = LuminaLayerNormContinuous( | |
| embedding_dim=hidden_size, | |
| conditioning_embedding_dim=min(hidden_size, 1024), | |
| elementwise_affine=False, | |
| eps=1e-6, | |
| bias=True, | |
| out_dim=patch_size * patch_size * self.out_channels, | |
| use_fused_rms_norm=use_fused_rms_norm, | |
| ) | |
| # Add learnable embeddings to distinguish different images | |
| self.image_index_embedding = nn.Parameter(torch.randn(5, hidden_size)) # support max 5 ref images | |
| self.gradient_checkpointing = False | |
| self.initialize_weights() | |
| def initialize_weights(self) -> None: | |
| """ | |
| Initialize the weights of the model. | |
| Uses Xavier uniform initialization for linear layers. | |
| """ | |
| nn.init.xavier_uniform_(self.x_embedder.weight) | |
| nn.init.constant_(self.x_embedder.bias, 0.0) | |
| nn.init.xavier_uniform_(self.ref_image_patch_embedder.weight) | |
| nn.init.constant_(self.ref_image_patch_embedder.bias, 0.0) | |
| nn.init.zeros_(self.norm_out.linear_1.weight) | |
| nn.init.zeros_(self.norm_out.linear_1.bias) | |
| nn.init.zeros_(self.norm_out.linear_2.weight) | |
| nn.init.zeros_(self.norm_out.linear_2.bias) | |
| nn.init.normal_(self.image_index_embedding, std=0.02) | |
| def img_patch_embed_and_refine( | |
| self, | |
| hidden_states, | |
| ref_image_hidden_states, | |
| padded_img_mask, | |
| padded_ref_img_mask, | |
| noise_rotary_emb, | |
| ref_img_rotary_emb, | |
| l_effective_ref_img_len, | |
| l_effective_img_len, | |
| temb | |
| ): | |
| batch_size = len(hidden_states) | |
| max_combined_img_len = max([img_len + sum(ref_img_len) for img_len, ref_img_len in zip(l_effective_img_len, l_effective_ref_img_len)]) | |
| hidden_states = self.x_embedder(hidden_states) | |
| ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states) | |
| for i in range(batch_size): | |
| shift = 0 | |
| for j, ref_img_len in enumerate(l_effective_ref_img_len[i]): | |
| ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + self.image_index_embedding[j] | |
| shift += ref_img_len | |
| for layer in self.noise_refiner: | |
| hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb) | |
| flat_l_effective_ref_img_len = list(itertools.chain(*l_effective_ref_img_len)) | |
| num_ref_images = len(flat_l_effective_ref_img_len) | |
| max_ref_img_len = max(flat_l_effective_ref_img_len) | |
| batch_ref_img_mask = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, dtype=torch.bool) | |
| batch_ref_image_hidden_states = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, self.config.hidden_size) | |
| batch_ref_img_rotary_emb = hidden_states.new_zeros(num_ref_images, max_ref_img_len, ref_img_rotary_emb.shape[-1], dtype=ref_img_rotary_emb.dtype) | |
| batch_temb = temb.new_zeros(num_ref_images, *temb.shape[1:], dtype=temb.dtype) | |
| # sequence of ref imgs to batch | |
| idx = 0 | |
| for i in range(batch_size): | |
| shift = 0 | |
| for ref_img_len in l_effective_ref_img_len[i]: | |
| batch_ref_img_mask[idx, :ref_img_len] = True | |
| batch_ref_image_hidden_states[idx, :ref_img_len] = ref_image_hidden_states[i, shift:shift + ref_img_len] | |
| batch_ref_img_rotary_emb[idx, :ref_img_len] = ref_img_rotary_emb[i, shift:shift + ref_img_len] | |
| batch_temb[idx] = temb[i] | |
| shift += ref_img_len | |
| idx += 1 | |
| # refine ref imgs separately | |
| for layer in self.ref_image_refiner: | |
| batch_ref_image_hidden_states = layer(batch_ref_image_hidden_states, batch_ref_img_mask, batch_ref_img_rotary_emb, batch_temb) | |
| # batch of ref imgs to sequence | |
| idx = 0 | |
| for i in range(batch_size): | |
| shift = 0 | |
| for ref_img_len in l_effective_ref_img_len[i]: | |
| ref_image_hidden_states[i, shift:shift + ref_img_len] = batch_ref_image_hidden_states[idx, :ref_img_len] | |
| shift += ref_img_len | |
| idx += 1 | |
| combined_img_hidden_states = hidden_states.new_zeros(batch_size, max_combined_img_len, self.config.hidden_size) | |
| for i, (ref_img_len, img_len) in enumerate(zip(l_effective_ref_img_len, l_effective_img_len)): | |
| combined_img_hidden_states[i, :sum(ref_img_len)] = ref_image_hidden_states[i, :sum(ref_img_len)] | |
| combined_img_hidden_states[i, sum(ref_img_len):sum(ref_img_len) + img_len] = hidden_states[i, :img_len] | |
| return combined_img_hidden_states | |
| def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states): | |
| batch_size = len(hidden_states) | |
| p = self.config.patch_size | |
| device = hidden_states[0].device | |
| img_sizes = [(img.size(1), img.size(2)) for img in hidden_states] | |
| l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes] | |
| if ref_image_hidden_states is not None: | |
| ref_img_sizes = [[(img.size(1), img.size(2)) for img in imgs] if imgs is not None else None for imgs in ref_image_hidden_states] | |
| l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes] | |
| else: | |
| ref_img_sizes = [None for _ in range(batch_size)] | |
| l_effective_ref_img_len = [[0] for _ in range(batch_size)] | |
| max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len]) | |
| max_img_len = max(l_effective_img_len) | |
| # ref image patch embeddings | |
| flat_ref_img_hidden_states = [] | |
| for i in range(batch_size): | |
| if ref_img_sizes[i] is not None: | |
| imgs = [] | |
| for ref_img in ref_image_hidden_states[i]: | |
| C, H, W = ref_img.size() | |
| ref_img = rearrange(ref_img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p) | |
| imgs.append(ref_img) | |
| img = torch.cat(imgs, dim=0) | |
| flat_ref_img_hidden_states.append(img) | |
| else: | |
| flat_ref_img_hidden_states.append(None) | |
| # image patch embeddings | |
| flat_hidden_states = [] | |
| for i in range(batch_size): | |
| img = hidden_states[i] | |
| C, H, W = img.size() | |
| img = rearrange(img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p) | |
| flat_hidden_states.append(img) | |
| padded_ref_img_hidden_states = torch.zeros(batch_size, max_ref_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype) | |
| padded_ref_img_mask = torch.zeros(batch_size, max_ref_img_len, dtype=torch.bool, device=device) | |
| for i in range(batch_size): | |
| if ref_img_sizes[i] is not None: | |
| padded_ref_img_hidden_states[i, :sum(l_effective_ref_img_len[i])] = flat_ref_img_hidden_states[i] | |
| padded_ref_img_mask[i, :sum(l_effective_ref_img_len[i])] = True | |
| padded_hidden_states = torch.zeros(batch_size, max_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype) | |
| padded_img_mask = torch.zeros(batch_size, max_img_len, dtype=torch.bool, device=device) | |
| for i in range(batch_size): | |
| padded_hidden_states[i, :l_effective_img_len[i]] = flat_hidden_states[i] | |
| padded_img_mask[i, :l_effective_img_len[i]] = True | |
| return ( | |
| padded_hidden_states, | |
| padded_ref_img_hidden_states, | |
| padded_img_mask, | |
| padded_ref_img_mask, | |
| l_effective_ref_img_len, | |
| l_effective_img_len, | |
| ref_img_sizes, | |
| img_sizes, | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: Union[torch.Tensor, List[torch.Tensor]], | |
| timestep: torch.Tensor, | |
| text_hidden_states: torch.Tensor, | |
| freqs_cis: torch.Tensor, | |
| text_attention_mask: torch.Tensor, | |
| ref_image_hidden_states: Optional[List[List[torch.Tensor]]] = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = False, | |
| ) -> Union[torch.Tensor, Transformer2DModelOutput]: | |
| if attention_kwargs is not None: | |
| attention_kwargs = attention_kwargs.copy() | |
| lora_scale = attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
| logger.warning( | |
| "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| # 1. Condition, positional & patch embedding | |
| batch_size = len(hidden_states) | |
| is_hidden_states_tensor = isinstance(hidden_states, torch.Tensor) | |
| if is_hidden_states_tensor: | |
| assert hidden_states.ndim == 4 | |
| hidden_states = [_hidden_states for _hidden_states in hidden_states] | |
| device = hidden_states[0].device | |
| temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype) | |
| ( | |
| hidden_states, | |
| ref_image_hidden_states, | |
| img_mask, | |
| ref_img_mask, | |
| l_effective_ref_img_len, | |
| l_effective_img_len, | |
| ref_img_sizes, | |
| img_sizes, | |
| ) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states) | |
| ( | |
| context_rotary_emb, | |
| ref_img_rotary_emb, | |
| noise_rotary_emb, | |
| rotary_emb, | |
| encoder_seq_lengths, | |
| seq_lengths, | |
| ) = self.rope_embedder( | |
| freqs_cis, | |
| text_attention_mask, | |
| l_effective_ref_img_len, | |
| l_effective_img_len, | |
| ref_img_sizes, | |
| img_sizes, | |
| device, | |
| ) | |
| # 2. Context refinement | |
| for layer in self.context_refiner: | |
| text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb) | |
| combined_img_hidden_states = self.img_patch_embed_and_refine( | |
| hidden_states, | |
| ref_image_hidden_states, | |
| img_mask, | |
| ref_img_mask, | |
| noise_rotary_emb, | |
| ref_img_rotary_emb, | |
| l_effective_ref_img_len, | |
| l_effective_img_len, | |
| temb, | |
| ) | |
| # 3. Joint Transformer blocks | |
| max_seq_len = max(seq_lengths) | |
| attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool) | |
| joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size) | |
| for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)): | |
| attention_mask[i, :seq_len] = True | |
| joint_hidden_states[i, :encoder_seq_len] = text_hidden_states[i, :encoder_seq_len] | |
| joint_hidden_states[i, encoder_seq_len:seq_len] = combined_img_hidden_states[i, :seq_len - encoder_seq_len] | |
| hidden_states = joint_hidden_states | |
| for layer_idx, layer in enumerate(self.layers): | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| hidden_states = self._gradient_checkpointing_func( | |
| layer, hidden_states, attention_mask, rotary_emb, temb | |
| ) | |
| else: | |
| hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb) | |
| # 4. Output norm & projection | |
| hidden_states = self.norm_out(hidden_states, temb) | |
| p = self.config.patch_size | |
| output = [] | |
| for i, (img_size, img_len, seq_len) in enumerate(zip(img_sizes, l_effective_img_len, seq_lengths)): | |
| height, width = img_size | |
| output.append(rearrange(hidden_states[i][seq_len - img_len:seq_len], '(h w) (p1 p2 c) -> c (h p1) (w p2)', h=height // p, w=width // p, p1=p, p2=p)) | |
| if is_hidden_states_tensor: | |
| output = torch.stack(output, dim=0) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return output | |
| return Transformer2DModelOutput(sample=output) | |