File size: 6,077 Bytes
35b68c1
 
6a7e30d
35b68c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7827446
 
35b68c1
7827446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b68c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8406021
 
 
 
 
 
 
 
 
 
 
 
 
 
35b68c1
 
 
 
 
 
 
 
 
 
 
588b770
35b68c1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# pip section :)

#!pip install -q transformers datasets gradio

# imports section

import torch
import torch.nn as nn
from transformers import RobertaTokenizer, RobertaModel
from datasets import load_dataset
import gradio as gr
import numpy as np

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using:", device)


# setup dataset
from datasets import load_dataset
dataset = load_dataset("stanfordnlp/imdb")


# setup tokenizer and dataset
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
dataset = load_dataset("imdb")  

def tokenize(batch):
    return tokenizer(batch["text"], padding="max_length", truncation=True, max_length=128)

encoded_dataset = dataset.map(tokenize, batched=True)
encoded_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])


# Roberta + BiLSTM + Attention setup
class RobertaBiLSTMAttention(nn.Module):
    def __init__(self, hidden_dim=128, num_labels=2):
        super().__init__()
        self.roberta = RobertaModel.from_pretrained("roberta-base")
        self.lstm = nn.LSTM(768, hidden_dim, batch_first=True, bidirectional=True)
        self.attn = nn.Linear(hidden_dim * 2, 1)
        self.dropout = nn.Dropout(0.3)
        self.fc = nn.Linear(hidden_dim * 2, num_labels)

    def forward(self, input_ids, attention_mask):
        with torch.no_grad():
            roberta_out = self.roberta(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
        lstm_out, _ = self.lstm(roberta_out)
        weights = torch.softmax(self.attn(lstm_out), dim=1)
        context = torch.sum(weights * lstm_out, dim=1)
        output = self.fc(self.dropout(context))
        return output


# setup train set and batch size
from torch.utils.data import DataLoader

train_loader = DataLoader(encoded_dataset["train"].select(range(20000)), batch_size=16, shuffle=True)
test_loader = DataLoader(encoded_dataset["test"].select(range(2000)), batch_size=16)





###
model = RobertaBiLSTMAttention().to(device)

# load model (weight) from my HF model repo
from huggingface_hub import hf_hub_download
import torch


model_path = hf_hub_download(
    repo_id="hrnrxb/roberta-bilstm-attention-sentiment",
    filename="pytorch_model.bin"
)


model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()



# # training process
# from tqdm import tqdm

# model = RobertaBiLSTMAttention().to(device)
# criterion = nn.CrossEntropyLoss()
# optimizer = torch.optim.Adam(model.parameters(), lr=2e-5)

# for epoch in range(10):
#     model.train()
#     total_loss = 0
#     progress_bar = tqdm(train_loader, desc=f"Epoch {epoch+1}")
#     for batch in progress_bar:
#         input_ids = batch["input_ids"].to(device)
#         attention_mask = batch["attention_mask"].to(device)
#         labels = batch["label"].to(device)

#         optimizer.zero_grad()
#         outputs = model(input_ids, attention_mask)
#         loss = criterion(outputs, labels)
#         loss.backward()
#         optimizer.step()

#         total_loss += loss.item()
#         avg_loss = total_loss / (progress_bar.n if progress_bar.n else 1)
#         progress_bar.set_postfix(loss=f"{avg_loss:.4f}")



# inner evaluation
model.eval()

samples = [
    # 1: sarcasm
    "Wow, what a masterpiece. I especially loved the part where nothing happened for two hours.",  # ๐Ÿ”ด Negative

    # 2: emotionally mixed
    "The movie was boring at times, but the ending completely blew my mind.",  # ๐ŸŸข Positive (ู†ุณุจุชุงู‹ ู…ุซุจุช)

    # 3: taโ€™arofy tone (fake praise)
    "It was... fine, I guess. Not bad. Not good. Just there.",  # ๐Ÿ”ด Negative (neutral leaning negative)

    # 4: visually good but poor content
    "Beautiful cinematography canโ€™t save a script written by a potato.",  # ๐Ÿ”ด Negative

    # 5: praise with weird slang
    "Yo that movie was sick af! ๐Ÿ”ฅ๐Ÿ”ฅ",  # ๐ŸŸข Positive ("sick" = slang for amazing)

    # 6: backhanded compliment
    "I didnโ€™t expect much, and yet it still managed to disappoint me.",  # ๐Ÿ”ด Negative

    # 7: full sarcasm
    "10/10 would recommend... if you enjoy falling asleep halfway through.",  # ๐Ÿ”ด Negative

    # 8: fake excitement
    "Absolutely incredible! I only checked my phone 12 times.",  # ๐Ÿ”ด Negative

    # 9: nostalgic + honest
    "Reminded me of my childhood, cheesy but heartwarming.",  # ๐ŸŸข Positive

    # 10: hype tone
    "Bro that film went HARD. Straight banger!",  # ๐ŸŸข Positive (slang-heavy positive)
]



for s in samples:
    tokens = tokenizer(s, return_tensors="pt", truncation=True, padding="max_length", max_length=128).to(device)
    with torch.no_grad():
        logits = model(tokens["input_ids"], tokens["attention_mask"])
        pred = torch.argmax(logits, dim=1).item()
        print(f"{s} โžค {'๐ŸŸข Positive' if pred == 1 else '๐Ÿ”ด Negative'} ")




# UI w/ gradio

import gradio as gr

header = gr.HTML("""
<div style="text-align:center; margin-bottom:10px;">
  <a href="https://github.com/hrnrxb/Advanced-Sentiment-Classifier" target="_blank" style="font-weight:bold; font-size:18px; text-decoration:none; color:#4A90E2;">
    ๐Ÿš€ View on GitHub
  </a> | 
  <a href="https://hrnrxb.github.io" target="_blank" style="font-weight:bold; font-size:18px; text-decoration:none; color:#4A90E2;">
    ๐ŸŒ My Website
  </a>
</div>
""")

def predict(text):
    model.eval()
    tokens = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=128).to(device)
    with torch.no_grad():
        logits = model(tokens["input_ids"], tokens["attention_mask"])
        prob = torch.softmax(logits, dim=1)
        pred = torch.argmax(prob, dim=1).item()
        conf = prob[0][pred].item()
    label = "๐ŸŸข Positive" if pred == 1 else "๐Ÿ”ด Negative"
    return f"{label} ({conf*100:.1f}%)"

gr.Interface(fn=predict, inputs=gr.Textbox(label="Enter a review"), outputs="text", description="โญ๏ธ [GitHub Repo](https://github.com/hrnrxb/Advanced-Sentiment-Classifier) | ๐ŸŒ [My Website (https://hrnrxb.github.io)](https://hrnrxb.github.io)").launch()