Spaces:
Build error
Build error
Update rag_server.py
Browse files- rag_server.py +16 -10
rag_server.py
CHANGED
|
@@ -13,21 +13,22 @@ from transformers import AutoModel
|
|
| 13 |
import streamlit as st
|
| 14 |
|
| 15 |
# --- Konfiguration ---
|
| 16 |
-
|
|
|
|
| 17 |
MODEL_NAME = "dannyk97/mistral-screenplay-model"
|
| 18 |
|
| 19 |
# --- Hilfsfunktionen ---
|
| 20 |
|
| 21 |
def query_huggingface_inference_endpoints(prompt):
|
| 22 |
"""
|
| 23 |
-
|
| 24 |
"""
|
| 25 |
try:
|
| 26 |
client = InferenceClient(token=HF_API_TOKEN)
|
| 27 |
result = client.text_generation(prompt, model=MODEL_NAME)
|
| 28 |
return result
|
| 29 |
except Exception as e:
|
| 30 |
-
return f"
|
| 31 |
|
| 32 |
# Function to download PDF from Google Drive
|
| 33 |
def download_pdf_from_drive(drive_link):
|
|
@@ -50,17 +51,22 @@ def extract_text_from_pdf(pdf_stream):
|
|
| 50 |
# Function to split text into chunks
|
| 51 |
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
| 52 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 53 |
-
chunk_size=chunk_size,
|
| 54 |
-
chunk_overlap=chunk_overlap,
|
| 55 |
-
length_function=len
|
| 56 |
)
|
| 57 |
return text_splitter.split_text(text)
|
| 58 |
|
| 59 |
# Function to create embeddings and store in FAISS
|
| 60 |
def create_embeddings_and_store(chunks):
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Function to query the vector database and interact with Hugging Face Inference API
|
| 66 |
def query_vector_db(query, vector_db):
|
|
@@ -71,7 +77,7 @@ def query_vector_db(query, vector_db):
|
|
| 71 |
# Interact with the Text Generation API
|
| 72 |
prompt = f"Nutze diesen Kontext um die Frage zu beantworten: {context}\nFrage: {query}"
|
| 73 |
try:
|
| 74 |
-
output = query_huggingface_inference_endpoints(prompt) #
|
| 75 |
return output
|
| 76 |
except Exception as e:
|
| 77 |
return f"FEHLER: {str(e)}"
|
|
|
|
| 13 |
import streamlit as st
|
| 14 |
|
| 15 |
# --- Konfiguration ---
|
| 16 |
+
os.environ["HF_HOME"] = "/app/cache" # Specify cache path
|
| 17 |
+
HF_API_TOKEN = os.environ.get("HF_API_TOKEN") # Read token from environment variable
|
| 18 |
MODEL_NAME = "dannyk97/mistral-screenplay-model"
|
| 19 |
|
| 20 |
# --- Hilfsfunktionen ---
|
| 21 |
|
| 22 |
def query_huggingface_inference_endpoints(prompt):
|
| 23 |
"""
|
| 24 |
+
Sends a request to the Hugging Face Inference API.
|
| 25 |
"""
|
| 26 |
try:
|
| 27 |
client = InferenceClient(token=HF_API_TOKEN)
|
| 28 |
result = client.text_generation(prompt, model=MODEL_NAME)
|
| 29 |
return result
|
| 30 |
except Exception as e:
|
| 31 |
+
return f"Error in query_huggingface_inference_endpoints: {e}"
|
| 32 |
|
| 33 |
# Function to download PDF from Google Drive
|
| 34 |
def download_pdf_from_drive(drive_link):
|
|
|
|
| 51 |
# Function to split text into chunks
|
| 52 |
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
| 53 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 54 |
+
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
|
|
|
|
|
|
| 55 |
)
|
| 56 |
return text_splitter.split_text(text)
|
| 57 |
|
| 58 |
# Function to create embeddings and store in FAISS
|
| 59 |
def create_embeddings_and_store(chunks):
|
| 60 |
+
try:
|
| 61 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 62 |
+
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
|
| 63 |
+
return vector_db
|
| 64 |
+
except Exception as e:
|
| 65 |
+
print(f"Error creating embeddings: {e}")
|
| 66 |
+
print("Using dummy embeddings to proceed (functionality will be limited).")
|
| 67 |
+
# Fallback to a simpler embedding model (but this might not work well)
|
| 68 |
+
vector_db = FAISS.from_texts(["fallback text"], HuggingFaceEmbeddings(model_name="all-mpnet-base-v2")) #Ggf mit "" ersetzen, falls die Implementierung nicht passt.
|
| 69 |
+
return vector_db
|
| 70 |
|
| 71 |
# Function to query the vector database and interact with Hugging Face Inference API
|
| 72 |
def query_vector_db(query, vector_db):
|
|
|
|
| 77 |
# Interact with the Text Generation API
|
| 78 |
prompt = f"Nutze diesen Kontext um die Frage zu beantworten: {context}\nFrage: {query}"
|
| 79 |
try:
|
| 80 |
+
output = query_huggingface_inference_endpoints(prompt) #Keine Modelangabe mehr
|
| 81 |
return output
|
| 82 |
except Exception as e:
|
| 83 |
return f"FEHLER: {str(e)}"
|