Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,336 Bytes
c5681ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
def load_saes_from_file(file_path, cfg, device):
"""
Load pre-extracted steering vectors from a local file.
This is much faster than load_saes() since it doesn't download large SAE files.
The file should be created using extract_steering_vectors.py script.
Args:
file_path: Path to the .pt file containing steering vectors
cfg: Configuration dict with 'features' list
device: Device to load tensors on ('cuda' or 'cpu')
Returns:
List of steering component dicts with keys: 'layer', 'feature', 'strength', 'vector'
"""
import os
if not os.path.exists(file_path):
raise FileNotFoundError(
f"Steering vectors file not found: {file_path}\n"
f"Please run: python extract_steering_vectors.py"
)
print(f"Loading pre-extracted steering vectors from {file_path}...")
# Load the dictionary of vectors
steering_vectors_dict = torch.load(file_path, map_location="cpu")
if not cfg['features'] or len(cfg['features']) == 0:
print("No features specified in config.")
return []
steering_components = []
features = cfg['features']
reduced_strengths = cfg.get('reduced_strengths', False)
for i, feature in enumerate(features):
layer_idx, feature_idx = feature[0], feature[1]
strength = feature[2] if len(feature) > 2 else 0.0
if reduced_strengths:
strength *= layer_idx
# Look up the pre-extracted vector
key = (layer_idx, feature_idx)
if key not in steering_vectors_dict:
raise KeyError(
f"Vector for layer {layer_idx}, feature {feature_idx} not found in {file_path}.\n"
f"Please re-run: python extract_steering_vectors.py"
)
vec = steering_vectors_dict[key].to(device, non_blocking=True)
# Display
reduced_str = f"[{strength/layer_idx:.2f}]" if layer_idx > 0 else "[N/A]"
print(f"Loaded feature {layer_idx} {feature_idx} {strength:.2f} {reduced_str}")
steering_components.append({
'layer': layer_idx,
'feature': feature_idx,
'strength': strength,
'vector': vec # Already normalized in the file
})
print(f"Loaded {len(steering_components)} steering vector(s) from local file")
return steering_components
def create_steering_hook(layer_idx, steering_components, clamp_intensity=False):
"""
Create a forward hook for a specific layer that applies steering.
Args:
layer_idx: Which layer this hook is for
steering_components: List of steering components (all layers)
clamp_intensity: Whether to clamp steering intensity
Returns:
Forward hook function
"""
layer_components = [sc for sc in steering_components if sc['layer'] == layer_idx]
if not layer_components:
return None
def hook(module, input, output):
"""Forward hook that modifies the output hidden states."""
# Handle different output formats (tuple vs tensor)
if isinstance(output, tuple):
hidden_states = output[0]
rest_of_output = output[1:]
else:
hidden_states = output
rest_of_output = None
# Handle different shapes during generation
original_shape = hidden_states.shape
if len(original_shape) == 2:
# During generation: [batch, hidden_dim] -> add seq_len dimension
hidden_states = hidden_states.unsqueeze(1) # [batch, 1, hidden_dim]
for sc in layer_components:
strength = sc['strength']
vector = sc['vector'] # Already normalized
# Ensure vector matches hidden_states dtype and device
vector = vector.to(dtype=hidden_states.dtype, device=hidden_states.device)
# Match nnsight's expansion pattern exactly
seq_len = hidden_states.shape[1]
amount = (strength * vector).unsqueeze(0).expand(seq_len, -1).unsqueeze(0) # [1, seq_len, hidden_dim]
if clamp_intensity:
# Remove existing projection (prevents over-steering)
projection_scalars = torch.einsum('bsh,h->bs', hidden_states, vector).unsqueeze(-1)
projection_vectors = projection_scalars * vector.view(1, 1, -1)
amount = amount - projection_vectors
hidden_states = hidden_states + amount
# Restore original shape if we added a dimension
if len(original_shape) == 2:
hidden_states = hidden_states.squeeze(1) # [batch, hidden_dim]
# Return in the same format as input
if rest_of_output is not None:
return (hidden_states,) + rest_of_output
else:
return hidden_states
return hook
def stream_steered_answer_hf(model: AutoModelForCausalLM,
tokenizer: AutoTokenizer,
chat,
steering_components,
max_new_tokens=128,
temperature=0.0,
repetition_penalty=1.0,
clamp_intensity=False,
stream=True):
"""
Generate steered answer using pure HuggingFace Transformers with streaming.
Args:
model: HuggingFace transformers model
tokenizer: Tokenizer instance
chat: Chat history in OpenAI format
steering_components: List of dicts with 'layer', 'strength', 'vector'
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature (0 = greedy)
repetition_penalty: Repetition penalty
clamp_intensity: Whether to clamp steering intensity
Yields:
Partial text as tokens are generated
"""
input_ids_list = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True)
input_ids = torch.tensor([input_ids_list]).to(model.device)
# Register steering hooks
hook_handles = []
layers_to_steer = set(sc['layer'] for sc in steering_components)
for layer_idx in layers_to_steer:
hook_fn = create_steering_hook(layer_idx, steering_components, clamp_intensity)
if hook_fn:
layer_module = model.model.layers[layer_idx]
handle = layer_module.register_forward_hook(hook_fn)
hook_handles.append(handle)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"max_new_tokens": max_new_tokens,
"temperature": temperature if temperature > 0 else 1.0,
"do_sample": temperature > 0,
"repetition_penalty": repetition_penalty,
"streamer": streamer,
"pad_token_id": tokenizer.eos_token_id,
}
thread = Thread(target=lambda: model.generate(**generation_kwargs))
thread.start()
generated_text = ""
for token_text in streamer:
generated_text += token_text
yield generated_text
thread.join()
for handle in hook_handles:
handle.remove()
|