File size: 6,201 Bytes
899d9c6
 
0ff4ef8
283bd45
b924465
899d9c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c7e6f1
 
f977d49
573aa88
2ac97e2
b61328c
8c7e6f1
b61328c
573aa88
b61328c
60216ec
573aa88
60216ec
5f94ff7
 
b61328c
899d9c6
9ab40fd
dcf3974
5f94ff7
631cc27
5f94ff7
 
 
 
f977d49
 
8c7e6f1
 
 
f977d49
b61328c
631cc27
b61328c
573aa88
b61328c
60216ec
573aa88
 
631cc27
 
899d9c6
9ab40fd
631cc27
 
8c7e6f1
f977d49
7716903
51a1671
 
f977d49
60216ec
8c7e6f1
dd66861
b924465
e8b5344
dd66861
d47c403
e8b5344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b924465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import type { Conversation, ConversationMessage, ModelWithTokenizer } from "$lib/types.js";
import type { ChatCompletionInputMessage, InferenceSnippet } from "@huggingface/tasks";
import { type ChatCompletionOutputMessage } from "@huggingface/tasks";

import { HfInference, snippets, type InferenceProvider } from "@huggingface/inference";
type ChatCompletionInputMessageChunk =
	NonNullable<ChatCompletionInputMessage["content"]> extends string | (infer U)[] ? U : never;

function parseMessage(message: ConversationMessage): ChatCompletionInputMessage {
	if (!message.images) return message;
	return {
		...message,
		content: [
			{
				type: "text",
				text: message.content ?? "",
			},
			...message.images.map(img => {
				return {
					type: "image_url",
					image_url: { url: img },
				} satisfies ChatCompletionInputMessageChunk;
			}),
		],
	};
}

export async function handleStreamingResponse(
	hf: HfInference,
	conversation: Conversation,
	onChunk: (content: string) => void,
	abortController: AbortController
): Promise<void> {
	const { model, systemMessage } = conversation;
	const messages = [
		...(isSystemPromptSupported(model) && systemMessage.content?.length ? [systemMessage] : []),
		...conversation.messages,
	];
	let out = "";
	for await (const chunk of hf.chatCompletionStream(
		{
			model: model.id,
			messages: messages.map(parseMessage),
			provider: conversation.provider,
			...conversation.config,
		},
		{ signal: abortController.signal }
	)) {
		if (chunk.choices && chunk.choices.length > 0 && chunk.choices[0]?.delta?.content) {
			out += chunk.choices[0].delta.content;
			onChunk(out);
		}
	}
}

export async function handleNonStreamingResponse(
	hf: HfInference,
	conversation: Conversation
): Promise<{ message: ChatCompletionOutputMessage; completion_tokens: number }> {
	const { model, systemMessage } = conversation;
	const messages = [
		...(isSystemPromptSupported(model) && systemMessage.content?.length ? [systemMessage] : []),
		...conversation.messages,
	];

	const response = await hf.chatCompletion({
		model: model.id,
		messages: messages.map(parseMessage),
		provider: conversation.provider,
		...conversation.config,
	});

	if (response.choices && response.choices.length > 0) {
		const { message } = response.choices[0]!;
		const { completion_tokens } = response.usage;
		return { message, completion_tokens };
	}
	throw new Error("No response from the model");
}

export function isSystemPromptSupported(model: ModelWithTokenizer) {
	return model?.tokenizerConfig?.chat_template?.includes("system");
}

export const defaultSystemMessage: { [key: string]: string } = {
	"Qwen/QwQ-32B-Preview":
		"You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.",
} as const;

export const customMaxTokens: { [key: string]: number } = {
	"01-ai/Yi-1.5-34B-Chat": 2048,
	"HuggingFaceM4/idefics-9b-instruct": 2048,
	"deepseek-ai/DeepSeek-Coder-V2-Instruct": 16384,
	"bigcode/starcoder": 8192,
	"bigcode/starcoderplus": 8192,
	"HuggingFaceH4/starcoderbase-finetuned-oasst1": 8192,
	"google/gemma-7b": 8192,
	"google/gemma-1.1-7b-it": 8192,
	"google/gemma-2b": 8192,
	"google/gemma-1.1-2b-it": 8192,
	"google/gemma-2-27b-it": 8192,
	"google/gemma-2-9b-it": 4096,
	"google/gemma-2-2b-it": 8192,
	"tiiuae/falcon-7b": 8192,
	"tiiuae/falcon-7b-instruct": 8192,
	"timdettmers/guanaco-33b-merged": 2048,
	"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
	"Qwen/Qwen2.5-72B-Instruct": 32768,
	"Qwen/Qwen2.5-Coder-32B-Instruct": 32768,
	"meta-llama/Meta-Llama-3-70B-Instruct": 8192,
	"CohereForAI/c4ai-command-r-plus-08-2024": 32768,
	"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
	"meta-llama/Llama-2-70b-chat-hf": 8192,
	"HuggingFaceH4/zephyr-7b-alpha": 17432,
	"HuggingFaceH4/zephyr-7b-beta": 32768,
	"mistralai/Mistral-7B-Instruct-v0.1": 32768,
	"mistralai/Mistral-7B-Instruct-v0.2": 32768,
	"mistralai/Mistral-7B-Instruct-v0.3": 32768,
	"mistralai/Mistral-Nemo-Instruct-2407": 32768,
	"meta-llama/Meta-Llama-3-8B-Instruct": 8192,
	"mistralai/Mistral-7B-v0.1": 32768,
	"bigcode/starcoder2-3b": 16384,
	"bigcode/starcoder2-15b": 16384,
	"HuggingFaceH4/starchat2-15b-v0.1": 16384,
	"codellama/CodeLlama-7b-hf": 8192,
	"codellama/CodeLlama-13b-hf": 8192,
	"codellama/CodeLlama-34b-Instruct-hf": 8192,
	"meta-llama/Llama-2-7b-chat-hf": 8192,
	"meta-llama/Llama-2-13b-chat-hf": 8192,
	"OpenAssistant/oasst-sft-6-llama-30b": 2048,
	"TheBloke/vicuna-7B-v1.5-GPTQ": 2048,
	"HuggingFaceH4/starchat-beta": 8192,
	"bigcode/octocoder": 8192,
	"vwxyzjn/starcoderbase-triviaqa": 8192,
	"lvwerra/starcoderbase-gsm8k": 8192,
	"NousResearch/Hermes-3-Llama-3.1-8B": 16384,
	"microsoft/Phi-3.5-mini-instruct": 32768,
	"meta-llama/Llama-3.1-70B-Instruct": 32768,
	"meta-llama/Llama-3.1-8B-Instruct": 8192,
} as const;

// Order of the elements in InferenceModal.svelte is determined by this const
export const inferenceSnippetLanguages = ["python", "js", "curl"] as const;

export type InferenceSnippetLanguage = (typeof inferenceSnippetLanguages)[number];

const GET_SNIPPET_FN = {
	curl: snippets.curl.getCurlInferenceSnippet,
	js: snippets.js.getJsInferenceSnippet,
	python: snippets.python.getPythonInferenceSnippet,
} as const;

export type GetInferenceSnippetReturn = (InferenceSnippet & { language: InferenceSnippetLanguage })[];

export function getInferenceSnippet(
	model: ModelWithTokenizer,
	provider: InferenceProvider,
	language: InferenceSnippetLanguage,
	accessToken: string,
	opts?: Record<string, unknown>
): GetInferenceSnippetReturn {
	const providerId = model.inferenceProviderMapping.find(p => p.provider === provider)?.providerId;
	const snippetsByClient = GET_SNIPPET_FN[language](
		{ ...model, inference: "" },
		accessToken,
		provider,
		providerId,
		opts
	);
	return snippetsByClient.map(snippetByClient => ({ ...snippetByClient, language }));
}

/**
 * - If language is defined, the function checks if in an inference snippet is available for that specific language
 */
export function hasInferenceSnippet(
	model: ModelWithTokenizer,
	provider: InferenceProvider,
	language: InferenceSnippetLanguage
): boolean {
	return getInferenceSnippet(model, provider, language, "").length > 0;
}