Spaces:
Runtime error
Runtime error
File size: 12,267 Bytes
1778c9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import type { ConversationEntityMembers } from "$lib/state/conversations.svelte";
import type { ChatCompletionInputMessage, GenerationParameters, PipelineType, WidgetType } from "@huggingface/tasks";
import {
getModelInputSnippet,
openAIbaseUrl,
stringifyGenerationConfig,
stringifyMessages,
type InferenceSnippet,
type ModelDataMinimal,
type SnippetInferenceProvider,
} from "@huggingface/tasks";
const HFJS_METHODS: Partial<Record<WidgetType, string>> = {
"text-classification": "textClassification",
"token-classification": "tokenClassification",
"table-question-answering": "tableQuestionAnswering",
"question-answering": "questionAnswering",
"translation": "translation",
"summarization": "summarization",
"feature-extraction": "featureExtraction",
"text-generation": "textGeneration",
"text2text-generation": "textGeneration",
"fill-mask": "fillMask",
"sentence-similarity": "sentenceSimilarity",
};
export const snippetBasic = (
model: ModelDataMinimal,
accessToken: string,
provider: SnippetInferenceProvider
): InferenceSnippet[] => {
return [
...(model.pipeline_tag && model.pipeline_tag in HFJS_METHODS
? [
{
client: "huggingface.js",
content: `\
import { HfInference } from "@huggingface/inference";
const client = new HfInference("${accessToken || `{API_TOKEN}`}");
const output = await client.${HFJS_METHODS[model.pipeline_tag]}({
model: "${model.id}",
inputs: ${getModelInputSnippet(model)},
provider: "${provider}",
});
console.log(output);
`,
},
]
: []),
{
client: "fetch",
content: `\
async function query(data) {
const response = await fetch(
"https://router.huggingface.co/hf-inference/models/${model.id}",
{
headers: {
Authorization: "Bearer ${accessToken || `{API_TOKEN}`}",
"Content-Type": "application/json",
},
method: "POST",
body: JSON.stringify(data),
}
);
const result = await response.json();
return result;
}
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
console.log(JSON.stringify(response));
});`,
},
];
};
export const snippetTextGeneration = (
model: ModelDataMinimal,
accessToken: string,
provider: SnippetInferenceProvider,
providerModelId?: string,
opts?: {
streaming?: boolean;
messages?: ChatCompletionInputMessage[];
temperature?: GenerationParameters["temperature"];
max_tokens?: GenerationParameters["max_tokens"];
top_p?: GenerationParameters["top_p"];
structured_output?: ConversationEntityMembers["structuredOutput"];
}
): InferenceSnippet[] => {
if (model.tags.includes("conversational")) {
// Conversational model detected, so we display a code snippet that features the Messages API
const streaming = opts?.streaming ?? true;
const exampleMessages = getModelInputSnippet(model) as ChatCompletionInputMessage[];
const messages = opts?.messages ?? exampleMessages;
const messagesStr = stringifyMessages(messages, { indent: "\t" });
const config = {
...(opts?.temperature ? { temperature: opts.temperature } : undefined),
max_tokens: opts?.max_tokens ?? 500,
...(opts?.top_p ? { top_p: opts.top_p } : undefined),
...(opts?.structured_output?.enabled
? {
response_format: JSON.stringify(
{
type: "json_schema",
json_schema: JSON.parse(opts.structured_output.schema ?? ""),
},
null,
6
),
}
: undefined),
};
const configStr = stringifyGenerationConfig(config, {
indent: "\n\t",
attributeValueConnector: ": ",
});
if (streaming) {
return [
{
client: "huggingface.js",
content: `import { HfInference } from "@huggingface/inference";
const client = new HfInference("${accessToken || `{API_TOKEN}`}");
let out = "";
const stream = client.chatCompletionStream({
model: "${model.id}",
messages: ${messagesStr},
provider: "${provider}",
${configStr}
});
for await (const chunk of stream) {
if (chunk.choices && chunk.choices.length > 0) {
const newContent = chunk.choices[0].delta.content;
out += newContent;
console.log(newContent);
}
}`,
},
{
client: "openai",
content: `import { OpenAI } from "openai";
const client = new OpenAI({
baseURL: "${openAIbaseUrl(provider)}",
apiKey: "${accessToken || `{API_TOKEN}`}"
});
data.
let out = "";
const stream = await client.chat.completions.create({
model: "${providerModelId ?? model.id}",
messages: ${messagesStr},
${configStr}
stream: true,
});
for await (const chunk of stream) {
if (chunk.choices && chunk.choices.length > 0) {
const newContent = chunk.choices[0].delta.content;
out += newContent;
console.log(newContent);
}
}`,
},
];
} else {
return [
{
client: "huggingface.js",
content: `import { HfInference } from "@huggingface/inference";
const client = new HfInference("${accessToken || `{API_TOKEN}`}");
const chatCompletion = await client.chatCompletion({
model: "${model.id}",
messages: ${messagesStr},
provider: "${provider}",
${configStr}
});
console.log(chatCompletion.choices[0].message);
`,
},
{
client: "openai",
content: `import { OpenAI } from "openai";
const client = new OpenAI({
baseURL: "${openAIbaseUrl(provider)}",
apiKey: "${accessToken || `{API_TOKEN}`}"
});
const chatCompletion = await client.chat.completions.create({
model: "${providerModelId ?? model.id}",
messages: ${messagesStr},
${configStr}
});
console.log(chatCompletion.choices[0].message);
`,
},
];
}
} else {
return snippetBasic(model, accessToken, provider);
}
};
export const snippetZeroShotClassification = (model: ModelDataMinimal, accessToken: string): InferenceSnippet[] => {
return [
{
client: "fetch",
content: `async function query(data) {
const response = await fetch(
"https://router.huggingface.co/hf-inference/models/${model.id}",
{
headers: {
Authorization: "Bearer ${accessToken || `{API_TOKEN}`}",
"Content-Type": "application/json",
},
method: "POST",
body: JSON.stringify(data),
}
);
const result = await response.json();
return result;
}
query({"inputs": ${getModelInputSnippet(
model
)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
console.log(JSON.stringify(response));
});`,
},
];
};
export const snippetTextToImage = (
model: ModelDataMinimal,
accessToken: string,
provider: SnippetInferenceProvider
): InferenceSnippet[] => {
return [
{
client: "huggingface.js",
content: `\
import { HfInference } from "@huggingface/inference";
const client = new HfInference("${accessToken || `{API_TOKEN}`}");
const image = await client.textToImage({
model: "${model.id}",
inputs: ${getModelInputSnippet(model)},
parameters: { num_inference_steps: 5 },
provider: "${provider}",
});
/// Use the generated image (it's a Blob)
`,
},
...(provider === "hf-inference"
? [
{
client: "fetch",
content: `async function query(data) {
const response = await fetch(
"https://router.huggingface.co/hf-inference/models/${model.id}",
{
headers: {
Authorization: "Bearer ${accessToken || `{API_TOKEN}`}",
"Content-Type": "application/json",
},
method: "POST",
body: JSON.stringify(data),
}
);
const result = await response.blob();
return result;
}
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
// Use image
});`,
},
]
: []),
];
};
export const snippetTextToVideo = (
model: ModelDataMinimal,
accessToken: string,
provider: SnippetInferenceProvider
): InferenceSnippet[] => {
return ["fal-ai", "replicate"].includes(provider)
? [
{
client: "huggingface.js",
content: `\
import { HfInference } from "@huggingface/inference";
const client = new HfInference("${accessToken || `{API_TOKEN}`}");
const video = await client.textToVideo({
model: "${model.id}",
provider: "${provider}",
inputs: ${getModelInputSnippet(model)},
parameters: { num_inference_steps: 5 },
});
// Use the generated video (it's a Blob)
`,
},
]
: [];
};
export const snippetTextToAudio = (
model: ModelDataMinimal,
accessToken: string,
provider: SnippetInferenceProvider
): InferenceSnippet[] => {
if (provider !== "hf-inference") {
return [];
}
const commonSnippet = `async function query(data) {
const response = await fetch(
"https://router.huggingface.co/hf-inference/models/${model.id}",
{
headers: {
Authorization: "Bearer ${accessToken || `{API_TOKEN}`}",
"Content-Type": "application/json",
},
method: "POST",
body: JSON.stringify(data),
}
);`;
if (model.library_name === "transformers") {
return [
{
client: "fetch",
content:
commonSnippet +
`
const result = await response.blob();
return result;
}
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
// Returns a byte object of the Audio wavform. Use it directly!
});`,
},
];
} else {
return [
{
client: "fetch",
content:
commonSnippet +
`
const result = await response.json();
return result;
}
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
console.log(JSON.stringify(response));
});`,
},
];
}
};
export const snippetAutomaticSpeechRecognition = (
model: ModelDataMinimal,
accessToken: string,
provider: SnippetInferenceProvider
): InferenceSnippet[] => {
return [
{
client: "huggingface.js",
content: `\
import { HfInference } from "@huggingface/inference";
const client = new HfInference("${accessToken || `{API_TOKEN}`}");
const data = fs.readFileSync(${getModelInputSnippet(model)});
const output = await client.automaticSpeechRecognition({
data,
model: "${model.id}",
provider: "${provider}",
});
console.log(output);
`,
},
...(provider === "hf-inference" ? snippetFile(model, accessToken, provider) : []),
];
};
export const snippetFile = (
model: ModelDataMinimal,
accessToken: string,
provider: SnippetInferenceProvider
): InferenceSnippet[] => {
if (provider !== "hf-inference") {
return [];
}
return [
{
client: "fetch",
content: `async function query(filename) {
const data = fs.readFileSync(filename);
const response = await fetch(
"https://router.huggingface.co/hf-inference/models/${model.id}",
{
headers: {
Authorization: "Bearer ${accessToken || `{API_TOKEN}`}",
"Content-Type": "application/json",
},
method: "POST",
body: data,
}
);
const result = await response.json();
return result;
}
query(${getModelInputSnippet(model)}).then((response) => {
console.log(JSON.stringify(response));
});`,
},
];
};
export const jsSnippets: Partial<
Record<
PipelineType,
(
model: ModelDataMinimal,
accessToken: string,
provider: SnippetInferenceProvider,
providerModelId?: string,
opts?: Record<string, unknown>
) => InferenceSnippet[]
>
> = {
// Same order as in tasks/src/pipelines.ts
"text-classification": snippetBasic,
"token-classification": snippetBasic,
"table-question-answering": snippetBasic,
"question-answering": snippetBasic,
"zero-shot-classification": snippetZeroShotClassification,
"translation": snippetBasic,
"summarization": snippetBasic,
"feature-extraction": snippetBasic,
"text-generation": snippetTextGeneration,
"image-text-to-text": snippetTextGeneration,
"text2text-generation": snippetBasic,
"fill-mask": snippetBasic,
"sentence-similarity": snippetBasic,
"automatic-speech-recognition": snippetAutomaticSpeechRecognition,
"text-to-image": snippetTextToImage,
"text-to-video": snippetTextToVideo,
"text-to-speech": snippetTextToAudio,
"text-to-audio": snippetTextToAudio,
"audio-to-audio": snippetFile,
"audio-classification": snippetFile,
"image-classification": snippetFile,
"image-to-text": snippetFile,
"object-detection": snippetFile,
"image-segmentation": snippetFile,
};
export function getJsInferenceSnippet(
model: ModelDataMinimal,
accessToken: string,
provider: SnippetInferenceProvider,
providerModelId?: string,
opts?: Record<string, unknown>
): InferenceSnippet[] {
return model.pipeline_tag && model.pipeline_tag in jsSnippets
? (jsSnippets[model.pipeline_tag]?.(model, accessToken, provider, providerModelId, opts) ?? [])
: [];
}
|