Spaces:
Build error
Build error
sanchit-gandhi
commited on
Commit
·
00744e7
1
Parent(s):
fe693ae
Update vision and audio models
Browse files- app.py +24 -7
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -11,6 +11,8 @@ from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
|
|
| 11 |
from transformers.models.auto.modeling_auto import (
|
| 12 |
MODEL_FOR_CTC_MAPPING_NAMES,
|
| 13 |
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
|
|
|
|
|
|
|
| 14 |
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
|
| 15 |
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
|
| 16 |
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES,
|
|
@@ -18,11 +20,23 @@ from transformers.models.auto.modeling_auto import (
|
|
| 18 |
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
|
| 19 |
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
|
| 20 |
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
)
|
| 22 |
|
| 23 |
-
audio_models = list(MODEL_FOR_CTC_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES.keys()) +
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
vision_models =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
today = datetime.date.today()
|
| 28 |
year, week, _ = today.isocalendar()
|
|
@@ -30,6 +44,7 @@ year, week, _ = today.isocalendar()
|
|
| 30 |
DATASET_REPO_URL = (
|
| 31 |
"https://huggingface.co/datasets/huggingface/transformers-stats-space-data"
|
| 32 |
)
|
|
|
|
| 33 |
DATA_FILENAME = f"data_{week}_{year}.csv"
|
| 34 |
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
| 35 |
|
|
@@ -65,9 +80,12 @@ def retrieve_model_stats():
|
|
| 65 |
[m.downloads for m in models if hasattr(m, "downloads")]
|
| 66 |
)
|
| 67 |
if len(models) > 0:
|
| 68 |
-
model_stats["download_per_model"] =
|
| 69 |
-
model_stats["num_downloads"] / len(models)
|
| 70 |
)
|
|
|
|
|
|
|
|
|
|
| 71 |
total_downloads += model_stats["num_downloads"]
|
| 72 |
|
| 73 |
# save in overall dict
|
|
@@ -106,7 +124,6 @@ if not os.path.isfile(DATA_FILE):
|
|
| 106 |
with open(DATA_FILE, "r") as f:
|
| 107 |
dataframe = pd.read_csv(DATA_FILE)
|
| 108 |
|
| 109 |
-
dataframe[dataframe["modality"] == "audio"]
|
| 110 |
int_downloads = np.array(
|
| 111 |
[int(x.replace(",", "")) for x in dataframe["num_downloads"].values]
|
| 112 |
)
|
|
@@ -198,7 +215,7 @@ st.title("All stats last 30 days")
|
|
| 198 |
st.table(dataframe)
|
| 199 |
|
| 200 |
st.title("Vision stats last 30 days")
|
| 201 |
-
st.table(dataframe[dataframe["modality"] == "vision"])
|
| 202 |
|
| 203 |
st.title("Audio stats last 30 days")
|
| 204 |
-
st.table(dataframe[dataframe["modality"] == "audio"])
|
|
|
|
| 11 |
from transformers.models.auto.modeling_auto import (
|
| 12 |
MODEL_FOR_CTC_MAPPING_NAMES,
|
| 13 |
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
|
| 14 |
+
MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES,
|
| 15 |
+
MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
|
| 16 |
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
|
| 17 |
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
|
| 18 |
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES,
|
|
|
|
| 20 |
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
|
| 21 |
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
|
| 22 |
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
|
| 23 |
+
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
|
| 24 |
+
MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES,
|
| 25 |
+
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
|
| 26 |
+
MODEL_FOR_BACKBONE_MAPPING_NAMES,
|
| 27 |
+
_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES,
|
| 28 |
)
|
| 29 |
|
| 30 |
+
audio_models = list(MODEL_FOR_CTC_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES.keys()) + \
|
| 31 |
+
list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES.keys()) + \
|
| 32 |
+
list(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES.keys())
|
| 33 |
|
| 34 |
+
vision_models = list(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES.keys()) + list(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES.keys()) + \
|
| 35 |
+
list(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.keys()) + \
|
| 36 |
+
list(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES.keys()) + list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES.keys()) + \
|
| 37 |
+
list(MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.keys()) + list(MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES.keys()) + \
|
| 38 |
+
list(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES.keys()) + list(MODEL_FOR_BACKBONE_MAPPING_NAMES.keys()) + \
|
| 39 |
+
list(_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES.keys())
|
| 40 |
|
| 41 |
today = datetime.date.today()
|
| 42 |
year, week, _ = today.isocalendar()
|
|
|
|
| 44 |
DATASET_REPO_URL = (
|
| 45 |
"https://huggingface.co/datasets/huggingface/transformers-stats-space-data"
|
| 46 |
)
|
| 47 |
+
|
| 48 |
DATA_FILENAME = f"data_{week}_{year}.csv"
|
| 49 |
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
| 50 |
|
|
|
|
| 80 |
[m.downloads for m in models if hasattr(m, "downloads")]
|
| 81 |
)
|
| 82 |
if len(models) > 0:
|
| 83 |
+
model_stats["download_per_model"] = int(
|
| 84 |
+
model_stats["num_downloads"] / len(models)
|
| 85 |
)
|
| 86 |
+
else:
|
| 87 |
+
model_stats["download_per_model"] = model_stats["num_downloads"]
|
| 88 |
+
|
| 89 |
total_downloads += model_stats["num_downloads"]
|
| 90 |
|
| 91 |
# save in overall dict
|
|
|
|
| 124 |
with open(DATA_FILE, "r") as f:
|
| 125 |
dataframe = pd.read_csv(DATA_FILE)
|
| 126 |
|
|
|
|
| 127 |
int_downloads = np.array(
|
| 128 |
[int(x.replace(",", "")) for x in dataframe["num_downloads"].values]
|
| 129 |
)
|
|
|
|
| 215 |
st.table(dataframe)
|
| 216 |
|
| 217 |
st.title("Vision stats last 30 days")
|
| 218 |
+
st.table(dataframe[dataframe["modality"] == "vision"].drop("modality", axis=1))
|
| 219 |
|
| 220 |
st.title("Audio stats last 30 days")
|
| 221 |
+
st.table(dataframe[dataframe["modality"] == "audio"].drop("modality", axis=1))
|
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
transformers
|
| 2 |
huggingface_hub
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/transformers.git
|
| 2 |
huggingface_hub
|