Jie Hu
commited on
Commit
·
b9e0a6a
1
Parent(s):
8e3fa18
init project
Browse files- modules/pe3r/images.py +27 -27
modules/pe3r/images.py
CHANGED
|
@@ -53,32 +53,32 @@ class Images:
|
|
| 53 |
self.np_images_size.append(np_shape)
|
| 54 |
|
| 55 |
|
| 56 |
-
# -- sam2 images --
|
| 57 |
-
img_mean = torch.tensor((0.485, 0.456, 0.406))[:, None, None]
|
| 58 |
-
img_std = torch.tensor((0.229, 0.224, 0.225))[:, None, None]
|
| 59 |
-
self.sam2_images = []
|
| 60 |
-
# TODO
|
| 61 |
-
self.sam2_video_size = (self.pil_images_size[0][1], self.pil_images_size[0][0])
|
| 62 |
-
self.sam2_input_size = 512
|
| 63 |
-
for pil_image in self.pil_images:
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
self.sam2_images = torch.stack(self.sam2_images)
|
| 69 |
-
self.sam2_images -= img_mean
|
| 70 |
-
self.sam2_images /= img_std
|
| 71 |
-
self.sam2_images.to(device)
|
| 72 |
|
| 73 |
-
# -- sam1 images --
|
| 74 |
-
self.sam1_images = []
|
| 75 |
-
self.sam1_images_size = []
|
| 76 |
-
self.sam1_input_size = 1024
|
| 77 |
-
self.sam1_transform = ResizeLongestSide(self.sam1_input_size)
|
| 78 |
-
for np_image in self.np_images:
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
|
|
|
| 53 |
self.np_images_size.append(np_shape)
|
| 54 |
|
| 55 |
|
| 56 |
+
# # -- sam2 images --
|
| 57 |
+
# img_mean = torch.tensor((0.485, 0.456, 0.406))[:, None, None]
|
| 58 |
+
# img_std = torch.tensor((0.229, 0.224, 0.225))[:, None, None]
|
| 59 |
+
# self.sam2_images = []
|
| 60 |
+
# # TODO
|
| 61 |
+
# self.sam2_video_size = (self.pil_images_size[0][1], self.pil_images_size[0][0])
|
| 62 |
+
# self.sam2_input_size = 512
|
| 63 |
+
# for pil_image in self.pil_images:
|
| 64 |
+
# np_image = np.array(pil_image.resize((self.sam2_input_size, self.sam2_input_size)))
|
| 65 |
+
# np_image = np_image / 255.0
|
| 66 |
+
# sam2_image = torch.from_numpy(np_image).permute(2, 0, 1)
|
| 67 |
+
# self.sam2_images.append(sam2_image)
|
| 68 |
+
# self.sam2_images = torch.stack(self.sam2_images)
|
| 69 |
+
# self.sam2_images -= img_mean
|
| 70 |
+
# self.sam2_images /= img_std
|
| 71 |
+
# self.sam2_images.to(device)
|
| 72 |
|
| 73 |
+
# # -- sam1 images --
|
| 74 |
+
# self.sam1_images = []
|
| 75 |
+
# self.sam1_images_size = []
|
| 76 |
+
# self.sam1_input_size = 1024
|
| 77 |
+
# self.sam1_transform = ResizeLongestSide(self.sam1_input_size)
|
| 78 |
+
# for np_image in self.np_images:
|
| 79 |
+
# sam1_image = self.sam1_transform.apply_image(np_image)
|
| 80 |
+
# sam1_image_torch = torch.as_tensor(sam1_image, device=device)
|
| 81 |
+
# transformed_image = sam1_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
|
| 82 |
|
| 83 |
+
# self.sam1_images.append(transformed_image)
|
| 84 |
+
# self.sam1_images_size.append(tuple(transformed_image.shape[-2:]))
|