init project
Browse files
app.py
CHANGED
|
@@ -257,23 +257,10 @@ def slerp_multiple(vectors, t_values):
|
|
| 257 |
return interpolated_vector
|
| 258 |
|
| 259 |
# @torch.no_grad
|
| 260 |
-
def get_mask_from_img_sam1(sam1_image, yolov8_image, original_size, input_size, transform):
|
| 261 |
|
| 262 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 263 |
-
SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
|
| 264 |
-
mobilesamv2 = sam_model_registry['sam_vit_h'](None)
|
| 265 |
-
sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
|
| 266 |
-
image_encoder = sam1.vision_encoder
|
| 267 |
-
|
| 268 |
-
prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
|
| 269 |
-
mobilesamv2.prompt_encoder = prompt_encoder
|
| 270 |
-
mobilesamv2.mask_decoder = mask_decoder
|
| 271 |
-
mobilesamv2.image_encoder=image_encoder
|
| 272 |
-
mobilesamv2.to(device=device)
|
| 273 |
-
mobilesamv2.eval()
|
| 274 |
|
| 275 |
-
YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
|
| 276 |
-
yolov8 = ObjectAwareModel(YOLO8_CKP)
|
| 277 |
|
| 278 |
sam_mask=[]
|
| 279 |
img_area = original_size[0] * original_size[1]
|
|
@@ -327,15 +314,10 @@ def get_mask_from_img_sam1(sam1_image, yolov8_image, original_size, input_size,
|
|
| 327 |
return ret_mask
|
| 328 |
|
| 329 |
# @torch.no_grad
|
| 330 |
-
def get_cog_feats(images):
|
| 331 |
|
| 332 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 333 |
|
| 334 |
-
sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
|
| 335 |
-
|
| 336 |
-
siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
|
| 337 |
-
siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")
|
| 338 |
-
|
| 339 |
cog_seg_maps = []
|
| 340 |
rev_cog_seg_maps = []
|
| 341 |
inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
|
|
@@ -346,7 +328,7 @@ def get_cog_feats(images):
|
|
| 346 |
np_images = images.np_images
|
| 347 |
np_images_size = images.np_images_size
|
| 348 |
|
| 349 |
-
sam1_masks = get_mask_from_img_sam1(sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
|
| 350 |
for mask in sam1_masks:
|
| 351 |
_, _, _ = sam2.add_new_mask(
|
| 352 |
inference_state=inference_state,
|
|
@@ -368,7 +350,7 @@ def get_cog_feats(images):
|
|
| 368 |
if out_frame_idx == 0:
|
| 369 |
continue
|
| 370 |
|
| 371 |
-
sam1_masks = get_mask_from_img_sam1(sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
|
| 372 |
|
| 373 |
for sam1_mask in sam1_masks:
|
| 374 |
flg = 1
|
|
@@ -484,13 +466,33 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
| 484 |
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
|
| 485 |
mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
|
| 486 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
if len(filelist) < 2:
|
| 488 |
raise gradio.Error("Please input at least 2 images.")
|
| 489 |
|
| 490 |
images = Images(filelist=filelist, device=device)
|
| 491 |
|
| 492 |
# try:
|
| 493 |
-
cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images)
|
| 494 |
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
| 495 |
# except Exception as e:
|
| 496 |
# rev_cog_seg_maps = []
|
|
|
|
| 257 |
return interpolated_vector
|
| 258 |
|
| 259 |
# @torch.no_grad
|
| 260 |
+
def get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_image, yolov8_image, original_size, input_size, transform):
|
| 261 |
|
| 262 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
|
|
|
|
|
|
| 264 |
|
| 265 |
sam_mask=[]
|
| 266 |
img_area = original_size[0] * original_size[1]
|
|
|
|
| 314 |
return ret_mask
|
| 315 |
|
| 316 |
# @torch.no_grad
|
| 317 |
+
def get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2):
|
| 318 |
|
| 319 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
cog_seg_maps = []
|
| 322 |
rev_cog_seg_maps = []
|
| 323 |
inference_state = sam2.init_state(images=images.sam2_images, video_height=images.sam2_video_size[0], video_width=images.sam2_video_size[1])
|
|
|
|
| 328 |
np_images = images.np_images
|
| 329 |
np_images_size = images.np_images_size
|
| 330 |
|
| 331 |
+
sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[0], np_images[0], np_images_size[0], sam1_images_size[0], images.sam1_transform)
|
| 332 |
for mask in sam1_masks:
|
| 333 |
_, _, _ = sam2.add_new_mask(
|
| 334 |
inference_state=inference_state,
|
|
|
|
| 350 |
if out_frame_idx == 0:
|
| 351 |
continue
|
| 352 |
|
| 353 |
+
sam1_masks = get_mask_from_img_sam1(yolov8, mobilesamv2, sam1_images[out_frame_idx], np_images[out_frame_idx], np_images_size[out_frame_idx], sam1_images_size[out_frame_idx], images.sam1_transform)
|
| 354 |
|
| 355 |
for sam1_mask in sam1_masks:
|
| 356 |
flg = 1
|
|
|
|
| 466 |
MAST3R_CKP = 'naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
|
| 467 |
mast3r = AsymmetricMASt3R.from_pretrained(MAST3R_CKP).to(device)
|
| 468 |
|
| 469 |
+
sam2 = SAM2VideoPredictor.from_pretrained('facebook/sam2.1-hiera-large', device=device)
|
| 470 |
+
|
| 471 |
+
siglip = AutoModel.from_pretrained("google/siglip-large-patch16-256", device_map=device)
|
| 472 |
+
siglip_processor = AutoProcessor.from_pretrained("google/siglip-large-patch16-256")
|
| 473 |
+
|
| 474 |
+
SAM1_DECODER_CKP = './checkpoints/Prompt_guided_Mask_Decoder.pt'
|
| 475 |
+
mobilesamv2 = sam_model_registry['sam_vit_h'](None)
|
| 476 |
+
sam1 = SamModel.from_pretrained('facebook/sam-vit-huge')
|
| 477 |
+
image_encoder = sam1.vision_encoder
|
| 478 |
+
|
| 479 |
+
prompt_encoder, mask_decoder = sam_model_registry['prompt_guided_decoder'](SAM1_DECODER_CKP)
|
| 480 |
+
mobilesamv2.prompt_encoder = prompt_encoder
|
| 481 |
+
mobilesamv2.mask_decoder = mask_decoder
|
| 482 |
+
mobilesamv2.image_encoder=image_encoder
|
| 483 |
+
mobilesamv2.to(device=device)
|
| 484 |
+
mobilesamv2.eval()
|
| 485 |
+
|
| 486 |
+
YOLO8_CKP='./checkpoints/ObjectAwareModel.pt'
|
| 487 |
+
yolov8 = ObjectAwareModel(YOLO8_CKP)
|
| 488 |
+
|
| 489 |
if len(filelist) < 2:
|
| 490 |
raise gradio.Error("Please input at least 2 images.")
|
| 491 |
|
| 492 |
images = Images(filelist=filelist, device=device)
|
| 493 |
|
| 494 |
# try:
|
| 495 |
+
cog_seg_maps, rev_cog_seg_maps, cog_feats = get_cog_feats(images, sam2, siglip, siglip_processor, yolov8, mobilesamv2)
|
| 496 |
imgs = load_images(images, rev_cog_seg_maps, size=512, verbose=not silent)
|
| 497 |
# except Exception as e:
|
| 498 |
# rev_cog_seg_maps = []
|