Spaces:
Build error
Build error
Support training text encoder
Browse files- app.py +16 -1
- inference.py +20 -0
- lora +1 -1
- trainer.py +16 -4
app.py
CHANGED
|
@@ -83,6 +83,10 @@ def create_training_demo(trainer: Trainer,
|
|
| 83 |
num_training_steps = gr.Number(
|
| 84 |
label='Number of Training Steps', value=1000, precision=0)
|
| 85 |
learning_rate = gr.Number(label='Learning Rate', value=0.0001)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
gradient_accumulation = gr.Number(
|
| 87 |
label='Number of Gradient Accumulation',
|
| 88 |
value=1,
|
|
@@ -113,6 +117,8 @@ def create_training_demo(trainer: Trainer,
|
|
| 113 |
concept_prompt,
|
| 114 |
num_training_steps,
|
| 115 |
learning_rate,
|
|
|
|
|
|
|
| 116 |
gradient_accumulation,
|
| 117 |
fp16,
|
| 118 |
use_8bit_adam,
|
|
@@ -136,6 +142,7 @@ def create_training_demo(trainer: Trainer,
|
|
| 136 |
def find_weight_files() -> list[str]:
|
| 137 |
curr_dir = pathlib.Path(__file__).parent
|
| 138 |
paths = sorted(curr_dir.rglob('*.pt'))
|
|
|
|
| 139 |
return [path.relative_to(curr_dir).as_posix() for path in paths]
|
| 140 |
|
| 141 |
|
|
@@ -165,6 +172,11 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
| 165 |
maximum=2,
|
| 166 |
step=0.05,
|
| 167 |
value=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
seed = gr.Slider(label='Seed',
|
| 169 |
minimum=0,
|
| 170 |
maximum=100000,
|
|
@@ -185,7 +197,8 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
| 185 |
run_button = gr.Button('Generate')
|
| 186 |
|
| 187 |
gr.Markdown('''
|
| 188 |
-
- The pretrained models are trained with the concept prompt "style of sks".
|
|
|
|
| 189 |
''')
|
| 190 |
with gr.Column():
|
| 191 |
result = gr.Image(label='Result')
|
|
@@ -199,6 +212,7 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
| 199 |
lora_weight_name,
|
| 200 |
prompt,
|
| 201 |
alpha,
|
|
|
|
| 202 |
seed,
|
| 203 |
num_steps,
|
| 204 |
guidance_scale,
|
|
@@ -211,6 +225,7 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
| 211 |
lora_weight_name,
|
| 212 |
prompt,
|
| 213 |
alpha,
|
|
|
|
| 214 |
seed,
|
| 215 |
num_steps,
|
| 216 |
guidance_scale,
|
|
|
|
| 83 |
num_training_steps = gr.Number(
|
| 84 |
label='Number of Training Steps', value=1000, precision=0)
|
| 85 |
learning_rate = gr.Number(label='Learning Rate', value=0.0001)
|
| 86 |
+
train_text_encoder = gr.Checkbox(label='Train Text Encoder',
|
| 87 |
+
value=False)
|
| 88 |
+
learning_rate_text = gr.Number(
|
| 89 |
+
label='Learning Rate for Text Encoder', value=0.00005)
|
| 90 |
gradient_accumulation = gr.Number(
|
| 91 |
label='Number of Gradient Accumulation',
|
| 92 |
value=1,
|
|
|
|
| 117 |
concept_prompt,
|
| 118 |
num_training_steps,
|
| 119 |
learning_rate,
|
| 120 |
+
train_text_encoder,
|
| 121 |
+
learning_rate_text,
|
| 122 |
gradient_accumulation,
|
| 123 |
fp16,
|
| 124 |
use_8bit_adam,
|
|
|
|
| 142 |
def find_weight_files() -> list[str]:
|
| 143 |
curr_dir = pathlib.Path(__file__).parent
|
| 144 |
paths = sorted(curr_dir.rglob('*.pt'))
|
| 145 |
+
paths = [path for path in paths if not path.stem.endswith('.text_encoder')]
|
| 146 |
return [path.relative_to(curr_dir).as_posix() for path in paths]
|
| 147 |
|
| 148 |
|
|
|
|
| 172 |
maximum=2,
|
| 173 |
step=0.05,
|
| 174 |
value=1)
|
| 175 |
+
alpha_for_text = gr.Slider(label='Alpha for Text Encoder',
|
| 176 |
+
minimum=0,
|
| 177 |
+
maximum=2,
|
| 178 |
+
step=0.05,
|
| 179 |
+
value=1)
|
| 180 |
seed = gr.Slider(label='Seed',
|
| 181 |
minimum=0,
|
| 182 |
maximum=100000,
|
|
|
|
| 197 |
run_button = gr.Button('Generate')
|
| 198 |
|
| 199 |
gr.Markdown('''
|
| 200 |
+
- The pretrained models for "disney", "illust" and "pop" are trained with the concept prompt "style of sks".
|
| 201 |
+
- The pretrained model for "kiriko" is trained with the concept prompt "game character bnha". For this model, the text encoder is also trained.
|
| 202 |
''')
|
| 203 |
with gr.Column():
|
| 204 |
result = gr.Image(label='Result')
|
|
|
|
| 212 |
lora_weight_name,
|
| 213 |
prompt,
|
| 214 |
alpha,
|
| 215 |
+
alpha_for_text,
|
| 216 |
seed,
|
| 217 |
num_steps,
|
| 218 |
guidance_scale,
|
|
|
|
| 225 |
lora_weight_name,
|
| 226 |
prompt,
|
| 227 |
alpha,
|
| 228 |
+
alpha_for_text,
|
| 229 |
seed,
|
| 230 |
num_steps,
|
| 231 |
guidance_scale,
|
inference.py
CHANGED
|
@@ -32,6 +32,14 @@ class InferencePipeline:
|
|
| 32 |
curr_dir = pathlib.Path(__file__).parent
|
| 33 |
return curr_dir / name
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def load_pipe(self, model_id: str, lora_filename: str) -> None:
|
| 36 |
weight_path = self.get_lora_weight_path(lora_filename)
|
| 37 |
if weight_path == self.weight_path:
|
|
@@ -47,6 +55,16 @@ class InferencePipeline:
|
|
| 47 |
pipe = pipe.to(self.device)
|
| 48 |
|
| 49 |
monkeypatch_lora(pipe.unet, lora_weight)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
self.pipe = pipe
|
| 51 |
|
| 52 |
def run(
|
|
@@ -55,6 +73,7 @@ class InferencePipeline:
|
|
| 55 |
lora_weight_name: str,
|
| 56 |
prompt: str,
|
| 57 |
alpha: float,
|
|
|
|
| 58 |
seed: int,
|
| 59 |
n_steps: int,
|
| 60 |
guidance_scale: float,
|
|
@@ -66,6 +85,7 @@ class InferencePipeline:
|
|
| 66 |
|
| 67 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 68 |
tune_lora_scale(self.pipe.unet, alpha) # type: ignore
|
|
|
|
| 69 |
out = self.pipe(prompt,
|
| 70 |
num_inference_steps=n_steps,
|
| 71 |
guidance_scale=guidance_scale,
|
|
|
|
| 32 |
curr_dir = pathlib.Path(__file__).parent
|
| 33 |
return curr_dir / name
|
| 34 |
|
| 35 |
+
@staticmethod
|
| 36 |
+
def get_lora_text_encoder_weight_path(path: pathlib.Path) -> str:
|
| 37 |
+
parent_dir = path.parent
|
| 38 |
+
stem = path.stem
|
| 39 |
+
text_encoder_filename = f'{stem}.text_encoder.pt'
|
| 40 |
+
path = parent_dir / text_encoder_filename
|
| 41 |
+
return path.as_posix() if path.exists() else ''
|
| 42 |
+
|
| 43 |
def load_pipe(self, model_id: str, lora_filename: str) -> None:
|
| 44 |
weight_path = self.get_lora_weight_path(lora_filename)
|
| 45 |
if weight_path == self.weight_path:
|
|
|
|
| 55 |
pipe = pipe.to(self.device)
|
| 56 |
|
| 57 |
monkeypatch_lora(pipe.unet, lora_weight)
|
| 58 |
+
|
| 59 |
+
lora_text_encoder_weight_path = self.get_lora_text_encoder_weight_path(
|
| 60 |
+
weight_path)
|
| 61 |
+
if lora_text_encoder_weight_path:
|
| 62 |
+
lora_text_encoder_weight = torch.load(
|
| 63 |
+
lora_text_encoder_weight_path, map_location=self.device)
|
| 64 |
+
monkeypatch_lora(pipe.text_encoder,
|
| 65 |
+
lora_text_encoder_weight,
|
| 66 |
+
target_replace_module=['CLIPAttention'])
|
| 67 |
+
|
| 68 |
self.pipe = pipe
|
| 69 |
|
| 70 |
def run(
|
|
|
|
| 73 |
lora_weight_name: str,
|
| 74 |
prompt: str,
|
| 75 |
alpha: float,
|
| 76 |
+
alpha_for_text: float,
|
| 77 |
seed: int,
|
| 78 |
n_steps: int,
|
| 79 |
guidance_scale: float,
|
|
|
|
| 85 |
|
| 86 |
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 87 |
tune_lora_scale(self.pipe.unet, alpha) # type: ignore
|
| 88 |
+
tune_lora_scale(self.pipe.text_encoder, alpha_for_text) # type: ignore
|
| 89 |
out = self.pipe(prompt,
|
| 90 |
num_inference_steps=n_steps,
|
| 91 |
guidance_scale=guidance_scale,
|
lora
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
Subproject commit
|
|
|
|
| 1 |
+
Subproject commit 26787a09bff4ebcb08f0ad4e848b67bce4389a7a
|
trainer.py
CHANGED
|
@@ -54,10 +54,20 @@ class Trainer:
|
|
| 54 |
out_path = self.instance_data_dir / f'{i:03d}.jpg'
|
| 55 |
image.save(out_path, format='JPEG', quality=100)
|
| 56 |
|
| 57 |
-
def run(
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
if not torch.cuda.is_available():
|
| 62 |
raise gr.Error('CUDA is not available.')
|
| 63 |
|
|
@@ -93,6 +103,8 @@ class Trainer:
|
|
| 93 |
command += ' --mixed_precision fp16 '
|
| 94 |
if use_8bit_adam:
|
| 95 |
command += ' --use_8bit_adam'
|
|
|
|
|
|
|
| 96 |
|
| 97 |
with open(self.output_dir / 'train.sh', 'w') as f:
|
| 98 |
command_s = ' '.join(command.split())
|
|
|
|
| 54 |
out_path = self.instance_data_dir / f'{i:03d}.jpg'
|
| 55 |
image.save(out_path, format='JPEG', quality=100)
|
| 56 |
|
| 57 |
+
def run(
|
| 58 |
+
self,
|
| 59 |
+
base_model: str,
|
| 60 |
+
resolution_s: str,
|
| 61 |
+
concept_images: list | None,
|
| 62 |
+
concept_prompt: str,
|
| 63 |
+
n_steps: int,
|
| 64 |
+
learning_rate: float,
|
| 65 |
+
train_text_encoder: bool,
|
| 66 |
+
learning_rate_text: float,
|
| 67 |
+
gradient_accumulation: int,
|
| 68 |
+
fp16: bool,
|
| 69 |
+
use_8bit_adam: bool,
|
| 70 |
+
) -> tuple[dict, str]:
|
| 71 |
if not torch.cuda.is_available():
|
| 72 |
raise gr.Error('CUDA is not available.')
|
| 73 |
|
|
|
|
| 103 |
command += ' --mixed_precision fp16 '
|
| 104 |
if use_8bit_adam:
|
| 105 |
command += ' --use_8bit_adam'
|
| 106 |
+
if train_text_encoder:
|
| 107 |
+
command += f' --train_text_encoder --learning_rate_text={learning_rate_text} --color_jitter'
|
| 108 |
|
| 109 |
with open(self.output_dir / 'train.sh', 'w') as f:
|
| 110 |
command_s = ' '.join(command.split())
|