Spaces:
Runtime error
Runtime error
Update
Browse files- .pre-commit-config.yaml +59 -34
- README.md +1 -1
- app.py +37 -59
- requirements.txt +2 -2
- style.css +4 -0
.pre-commit-config.yaml
CHANGED
|
@@ -1,36 +1,61 @@
|
|
| 1 |
exclude: ^patch
|
| 2 |
repos:
|
| 3 |
-
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
exclude: ^patch
|
| 2 |
repos:
|
| 3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 4 |
+
rev: v4.6.0
|
| 5 |
+
hooks:
|
| 6 |
+
- id: check-executables-have-shebangs
|
| 7 |
+
- id: check-json
|
| 8 |
+
- id: check-merge-conflict
|
| 9 |
+
- id: check-shebang-scripts-are-executable
|
| 10 |
+
- id: check-toml
|
| 11 |
+
- id: check-yaml
|
| 12 |
+
- id: end-of-file-fixer
|
| 13 |
+
- id: mixed-line-ending
|
| 14 |
+
args: ["--fix=lf"]
|
| 15 |
+
- id: requirements-txt-fixer
|
| 16 |
+
- id: trailing-whitespace
|
| 17 |
+
- repo: https://github.com/myint/docformatter
|
| 18 |
+
rev: v1.7.5
|
| 19 |
+
hooks:
|
| 20 |
+
- id: docformatter
|
| 21 |
+
args: ["--in-place"]
|
| 22 |
+
- repo: https://github.com/pycqa/isort
|
| 23 |
+
rev: 5.13.2
|
| 24 |
+
hooks:
|
| 25 |
+
- id: isort
|
| 26 |
+
args: ["--profile", "black"]
|
| 27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 28 |
+
rev: v1.10.0
|
| 29 |
+
hooks:
|
| 30 |
+
- id: mypy
|
| 31 |
+
args: ["--ignore-missing-imports"]
|
| 32 |
+
additional_dependencies:
|
| 33 |
+
[
|
| 34 |
+
"types-python-slugify",
|
| 35 |
+
"types-requests",
|
| 36 |
+
"types-PyYAML",
|
| 37 |
+
"types-pytz",
|
| 38 |
+
]
|
| 39 |
+
- repo: https://github.com/psf/black
|
| 40 |
+
rev: 24.4.2
|
| 41 |
+
hooks:
|
| 42 |
+
- id: black
|
| 43 |
+
language_version: python3.10
|
| 44 |
+
args: ["--line-length", "119"]
|
| 45 |
+
- repo: https://github.com/kynan/nbstripout
|
| 46 |
+
rev: 0.7.1
|
| 47 |
+
hooks:
|
| 48 |
+
- id: nbstripout
|
| 49 |
+
args:
|
| 50 |
+
[
|
| 51 |
+
"--extra-keys",
|
| 52 |
+
"metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
|
| 53 |
+
]
|
| 54 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
| 55 |
+
rev: 1.8.5
|
| 56 |
+
hooks:
|
| 57 |
+
- id: nbqa-black
|
| 58 |
+
- id: nbqa-pyupgrade
|
| 59 |
+
args: ["--py37-plus"]
|
| 60 |
+
- id: nbqa-isort
|
| 61 |
+
args: ["--float-to-top"]
|
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 📊
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
suggested_hardware: t4-small
|
|
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.36.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
suggested_hardware: t4-small
|
app.py
CHANGED
|
@@ -15,29 +15,25 @@ import torch
|
|
| 15 |
import torch.nn as nn
|
| 16 |
from huggingface_hub import hf_hub_download
|
| 17 |
|
| 18 |
-
if os.environ.get(
|
| 19 |
-
with open(
|
| 20 |
-
subprocess.run(shlex.split(
|
| 21 |
-
cwd='stylegan2-pytorch',
|
| 22 |
-
stdin=f)
|
| 23 |
if not torch.cuda.is_available():
|
| 24 |
-
with open(
|
| 25 |
-
subprocess.run(shlex.split(
|
| 26 |
-
cwd='stylegan2-pytorch',
|
| 27 |
-
stdin=f)
|
| 28 |
|
| 29 |
-
sys.path.insert(0,
|
| 30 |
|
| 31 |
from model import Generator
|
| 32 |
|
| 33 |
-
DESCRIPTION =
|
| 34 |
|
| 35 |
Related Apps:
|
| 36 |
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
|
| 37 |
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
|
| 38 |
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
|
| 39 |
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
|
| 40 |
-
|
| 41 |
|
| 42 |
MAX_SEED = np.iinfo(np.int32).max
|
| 43 |
|
|
@@ -50,13 +46,12 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 50 |
|
| 51 |
def load_model(device: torch.device) -> nn.Module:
|
| 52 |
model = Generator(512, 1024, 4, channel_multiplier=2)
|
| 53 |
-
path = hf_hub_download(
|
| 54 |
-
'models/aydao-anime-danbooru2019s-512-5268480.pt')
|
| 55 |
checkpoint = torch.load(path)
|
| 56 |
-
model.load_state_dict(checkpoint[
|
| 57 |
model.eval()
|
| 58 |
model.to(device)
|
| 59 |
-
model.latent_avg = checkpoint[
|
| 60 |
with torch.inference_mode():
|
| 61 |
z = torch.zeros((1, model.style_dim)).to(device)
|
| 62 |
model([z], truncation=0.7, truncation_latent=model.latent_avg)
|
|
@@ -64,26 +59,27 @@ def load_model(device: torch.device) -> nn.Module:
|
|
| 64 |
|
| 65 |
|
| 66 |
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
|
| 67 |
-
return torch.from_numpy(np.random.RandomState(seed).randn(
|
| 68 |
-
1, z_dim)).to(device).float()
|
| 69 |
|
| 70 |
|
| 71 |
@torch.inference_mode()
|
| 72 |
-
def generate_image(model: nn.Module, z: torch.Tensor, truncation_psi: float,
|
| 73 |
-
|
| 74 |
-
out, _ = model([z],
|
| 75 |
-
truncation=truncation_psi,
|
| 76 |
-
truncation_latent=model.latent_avg,
|
| 77 |
-
randomize_noise=randomize_noise)
|
| 78 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
| 79 |
return out[0].cpu().numpy()
|
| 80 |
|
| 81 |
|
| 82 |
@torch.inference_mode()
|
| 83 |
-
def generate_interpolated_images(
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
seed0 = int(np.clip(seed0, 0, MAX_SEED))
|
| 88 |
seed1 = int(np.clip(seed1, 0, MAX_SEED))
|
| 89 |
|
|
@@ -101,11 +97,9 @@ def generate_interpolated_images(seed0: int, seed1: int, num_intermediate: int,
|
|
| 101 |
return res
|
| 102 |
|
| 103 |
|
| 104 |
-
device = torch.device(
|
| 105 |
model = load_model(device)
|
| 106 |
-
fn = functools.partial(generate_interpolated_images,
|
| 107 |
-
model=model,
|
| 108 |
-
device=device)
|
| 109 |
|
| 110 |
examples = [
|
| 111 |
[29703, 55376, 3, 0.7, 0.7, False],
|
|
@@ -115,41 +109,25 @@ examples = [
|
|
| 115 |
[55376, 55376, 5, 0.3, 1.3, False],
|
| 116 |
]
|
| 117 |
|
| 118 |
-
with gr.Blocks(css=
|
| 119 |
gr.Markdown(DESCRIPTION)
|
| 120 |
with gr.Row():
|
| 121 |
with gr.Column():
|
| 122 |
-
seed_1 = gr.Slider(label=
|
| 123 |
-
|
| 124 |
-
maximum=MAX_SEED,
|
| 125 |
-
step=1,
|
| 126 |
-
value=29703)
|
| 127 |
-
seed_2 = gr.Slider(label='Seed 2',
|
| 128 |
-
minimum=0,
|
| 129 |
-
maximum=MAX_SEED,
|
| 130 |
-
step=1,
|
| 131 |
-
value=55376)
|
| 132 |
num_intermediate_frames = gr.Slider(
|
| 133 |
-
label=
|
| 134 |
minimum=1,
|
| 135 |
maximum=21,
|
| 136 |
step=1,
|
| 137 |
value=3,
|
| 138 |
)
|
| 139 |
-
psi_1 = gr.Slider(label=
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
value=0.7)
|
| 144 |
-
psi_2 = gr.Slider(label='Truncation psi 2',
|
| 145 |
-
minimum=0,
|
| 146 |
-
maximum=2,
|
| 147 |
-
step=0.05,
|
| 148 |
-
value=0.7)
|
| 149 |
-
randomize_noise = gr.Checkbox(label='Randomize Noise', value=False)
|
| 150 |
-
run_button = gr.Button('Run')
|
| 151 |
with gr.Column():
|
| 152 |
-
result = gr.Gallery(label=
|
| 153 |
|
| 154 |
inputs = [
|
| 155 |
seed_1,
|
|
@@ -164,12 +142,12 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 164 |
inputs=inputs,
|
| 165 |
outputs=result,
|
| 166 |
fn=fn,
|
| 167 |
-
cache_examples=os.getenv(
|
| 168 |
)
|
| 169 |
run_button.click(
|
| 170 |
fn=fn,
|
| 171 |
inputs=inputs,
|
| 172 |
outputs=result,
|
| 173 |
-
api_name=
|
| 174 |
)
|
| 175 |
demo.queue(max_size=10).launch()
|
|
|
|
| 15 |
import torch.nn as nn
|
| 16 |
from huggingface_hub import hf_hub_download
|
| 17 |
|
| 18 |
+
if os.environ.get("SYSTEM") == "spaces":
|
| 19 |
+
with open("patch") as f:
|
| 20 |
+
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
|
|
|
|
|
|
|
| 21 |
if not torch.cuda.is_available():
|
| 22 |
+
with open("patch-cpu") as f:
|
| 23 |
+
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
sys.path.insert(0, "stylegan2-pytorch")
|
| 26 |
|
| 27 |
from model import Generator
|
| 28 |
|
| 29 |
+
DESCRIPTION = """# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist) interpolation
|
| 30 |
|
| 31 |
Related Apps:
|
| 32 |
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
|
| 33 |
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
|
| 34 |
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
|
| 35 |
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
|
| 36 |
+
"""
|
| 37 |
|
| 38 |
MAX_SEED = np.iinfo(np.int32).max
|
| 39 |
|
|
|
|
| 46 |
|
| 47 |
def load_model(device: torch.device) -> nn.Module:
|
| 48 |
model = Generator(512, 1024, 4, channel_multiplier=2)
|
| 49 |
+
path = hf_hub_download("public-data/TADNE", "models/aydao-anime-danbooru2019s-512-5268480.pt")
|
|
|
|
| 50 |
checkpoint = torch.load(path)
|
| 51 |
+
model.load_state_dict(checkpoint["g_ema"])
|
| 52 |
model.eval()
|
| 53 |
model.to(device)
|
| 54 |
+
model.latent_avg = checkpoint["latent_avg"].to(device)
|
| 55 |
with torch.inference_mode():
|
| 56 |
z = torch.zeros((1, model.style_dim)).to(device)
|
| 57 |
model([z], truncation=0.7, truncation_latent=model.latent_avg)
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
|
| 62 |
+
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).to(device).float()
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
@torch.inference_mode()
|
| 66 |
+
def generate_image(model: nn.Module, z: torch.Tensor, truncation_psi: float, randomize_noise: bool) -> np.ndarray:
|
| 67 |
+
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
| 69 |
return out[0].cpu().numpy()
|
| 70 |
|
| 71 |
|
| 72 |
@torch.inference_mode()
|
| 73 |
+
def generate_interpolated_images(
|
| 74 |
+
seed0: int,
|
| 75 |
+
seed1: int,
|
| 76 |
+
num_intermediate: int,
|
| 77 |
+
psi0: float,
|
| 78 |
+
psi1: float,
|
| 79 |
+
randomize_noise: bool,
|
| 80 |
+
model: nn.Module,
|
| 81 |
+
device: torch.device,
|
| 82 |
+
) -> list[np.ndarray]:
|
| 83 |
seed0 = int(np.clip(seed0, 0, MAX_SEED))
|
| 84 |
seed1 = int(np.clip(seed1, 0, MAX_SEED))
|
| 85 |
|
|
|
|
| 97 |
return res
|
| 98 |
|
| 99 |
|
| 100 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 101 |
model = load_model(device)
|
| 102 |
+
fn = functools.partial(generate_interpolated_images, model=model, device=device)
|
|
|
|
|
|
|
| 103 |
|
| 104 |
examples = [
|
| 105 |
[29703, 55376, 3, 0.7, 0.7, False],
|
|
|
|
| 109 |
[55376, 55376, 5, 0.3, 1.3, False],
|
| 110 |
]
|
| 111 |
|
| 112 |
+
with gr.Blocks(css="style.css") as demo:
|
| 113 |
gr.Markdown(DESCRIPTION)
|
| 114 |
with gr.Row():
|
| 115 |
with gr.Column():
|
| 116 |
+
seed_1 = gr.Slider(label="Seed 1", minimum=0, maximum=MAX_SEED, step=1, value=29703)
|
| 117 |
+
seed_2 = gr.Slider(label="Seed 2", minimum=0, maximum=MAX_SEED, step=1, value=55376)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
num_intermediate_frames = gr.Slider(
|
| 119 |
+
label="Number of Intermediate Frames",
|
| 120 |
minimum=1,
|
| 121 |
maximum=21,
|
| 122 |
step=1,
|
| 123 |
value=3,
|
| 124 |
)
|
| 125 |
+
psi_1 = gr.Slider(label="Truncation psi 1", minimum=0, maximum=2, step=0.05, value=0.7)
|
| 126 |
+
psi_2 = gr.Slider(label="Truncation psi 2", minimum=0, maximum=2, step=0.05, value=0.7)
|
| 127 |
+
randomize_noise = gr.Checkbox(label="Randomize Noise", value=False)
|
| 128 |
+
run_button = gr.Button("Run")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
with gr.Column():
|
| 130 |
+
result = gr.Gallery(label="Output")
|
| 131 |
|
| 132 |
inputs = [
|
| 133 |
seed_1,
|
|
|
|
| 142 |
inputs=inputs,
|
| 143 |
outputs=result,
|
| 144 |
fn=fn,
|
| 145 |
+
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
|
| 146 |
)
|
| 147 |
run_button.click(
|
| 148 |
fn=fn,
|
| 149 |
inputs=inputs,
|
| 150 |
outputs=result,
|
| 151 |
+
api_name="run",
|
| 152 |
)
|
| 153 |
demo.queue(max_size=10).launch()
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
numpy==1.
|
| 2 |
-
Pillow==10.
|
| 3 |
torch==2.0.1
|
| 4 |
torchvision==0.15.2
|
|
|
|
| 1 |
+
numpy==1.26.4
|
| 2 |
+
Pillow==10.3.0
|
| 3 |
torch==2.0.1
|
| 4 |
torchvision==0.15.2
|
style.css
CHANGED
|
@@ -1,7 +1,11 @@
|
|
| 1 |
h1 {
|
| 2 |
text-align: center;
|
|
|
|
| 3 |
}
|
| 4 |
|
| 5 |
#duplicate-button {
|
| 6 |
margin: auto;
|
|
|
|
|
|
|
|
|
|
| 7 |
}
|
|
|
|
| 1 |
h1 {
|
| 2 |
text-align: center;
|
| 3 |
+
display: block;
|
| 4 |
}
|
| 5 |
|
| 6 |
#duplicate-button {
|
| 7 |
margin: auto;
|
| 8 |
+
color: #fff;
|
| 9 |
+
background: #1565c0;
|
| 10 |
+
border-radius: 100vh;
|
| 11 |
}
|