File size: 8,261 Bytes
6510698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""
Model loading module with robust error handling and environment adaptation.
"""

import logging
import torch
from typing import Optional, Tuple, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

from .config.model_config import ModelConfig, EnvironmentDetector, DependencyValidator

logger = logging.getLogger(__name__)


class ModelLoader:
    """Handles model loading with environment-specific optimizations."""
    
    def __init__(self):
        self.config: Optional[ModelConfig] = None
        self.model: Optional[Any] = None
        self.tokenizer: Optional[Any] = None
        self.pipeline: Optional[Any] = None
        self._is_loaded = False
    
    def validate_environment(self) -> bool:
        """Validate that the environment is ready for model loading."""
        logger.info("πŸ” Validating environment...")
        
        # Check dependencies
        if not DependencyValidator.is_environment_ready():
            logger.error("❌ Environment validation failed - missing dependencies")
            return False
        
        # Log environment info
        env_info = EnvironmentDetector.detect_environment()
        logger.info(f"πŸ“Š Environment info: {env_info}")
        
        return True
    
    def create_config(
        self, 
        model_id: Optional[str] = None, 
        revision: Optional[str] = None
    ) -> ModelConfig:
        """Create model configuration based on environment."""
        logger.info("βš™οΈ Creating model configuration...")
        
        self.config = EnvironmentDetector.create_model_config(model_id, revision)
        
        logger.info(f"πŸ“‹ Model config created:")
        logger.info(f"   Model ID: {self.config.model_id}")
        logger.info(f"   Revision: {self.config.revision or 'latest'}")
        logger.info(f"   Device: {self.config.device_map}")
        logger.info(f"   Dtype: {self.config.dtype}")
        logger.info(f"   Attention: {self.config.attn_implementation}")
        
        return self.config
    
    def load_tokenizer(self) -> bool:
        """Load the tokenizer."""
        if not self.config:
            logger.error("❌ No configuration available")
            return False
        
        try:
            logger.info("πŸ“ Loading tokenizer...")
            self.tokenizer = AutoTokenizer.from_pretrained(
                self.config.model_id,
                trust_remote_code=self.config.trust_remote_code,
                revision=self.config.revision
            )
            logger.info("βœ… Tokenizer loaded successfully")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to load tokenizer: {e}")
            return False
    
    def load_model(self) -> bool:
        """Load the model with environment-specific configuration."""
        if not self.config:
            logger.error("❌ No configuration available")
            return False
        
        try:
            logger.info("πŸ€– Loading model...")
            logger.info(f"   This may take several minutes for {self.config.model_id}")
            
            # Load model with configuration
            self.model = AutoModelForCausalLM.from_pretrained(
                self.config.model_id,
                trust_remote_code=self.config.trust_remote_code,
                revision=self.config.revision,
                attn_implementation=self.config.attn_implementation,
                dtype=self.config.dtype,  # Use dtype instead of deprecated torch_dtype
                device_map=self.config.device_map,
                low_cpu_mem_usage=self.config.low_cpu_mem_usage
            ).eval()
            
            logger.info("βœ… Model loaded successfully")
            
            # Log model info
            if hasattr(self.model, 'config'):
                logger.info(f"πŸ“Š Model info:")
                logger.info(f"   Architecture: {getattr(self.model.config, 'architectures', 'unknown')}")
                logger.info(f"   Parameters: ~{self.model.num_parameters() / 1e9:.1f}B")
            
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to load model: {e}")
            return False
    
    def create_pipeline(self) -> bool:
        """Create inference pipeline."""
        if not self.model or not self.tokenizer:
            logger.error("❌ Model or tokenizer not loaded")
            return False
        
        try:
            logger.info("πŸ”§ Creating inference pipeline...")
            
            self.pipeline = pipeline(
                "text-generation",
                model=self.model,
                tokenizer=self.tokenizer,
                dtype=self.config.dtype,  # Use dtype instead of deprecated torch_dtype
                device_map=self.config.device_map,
                trust_remote_code=self.config.trust_remote_code
            )
            
            logger.info("βœ… Pipeline created successfully")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to create pipeline: {e}")
            return False
    
    def load_complete_model(
        self, 
        model_id: Optional[str] = None, 
        revision: Optional[str] = None
    ) -> bool:
        """Load complete model (tokenizer + model + pipeline)."""
        logger.info("πŸš€ Starting complete model loading process...")
        
        try:
            # Validate environment
            if not self.validate_environment():
                return False
            
            # Create configuration
            self.create_config(model_id, revision)
            
            # Load components in order
            if not self.load_tokenizer():
                return False
            
            if not self.load_model():
                return False
            
            if not self.create_pipeline():
                return False
            
            # Run smoke test
            if not self.smoke_test():
                logger.warning("⚠️ Smoke test failed, but model appears loaded")
            
            self._is_loaded = True
            logger.info("πŸŽ‰ Model loading completed successfully!")
            return True
            
        except Exception as e:
            logger.error(f"❌ Complete model loading failed: {e}")
            return False
    
    def smoke_test(self) -> bool:
        """Run a quick smoke test to verify model works."""
        if not self.pipeline:
            return False
        
        try:
            logger.info("πŸ§ͺ Running smoke test...")
            
            # Simple test generation
            test_input = "Hello"
            result = self.pipeline(
                test_input,
                max_new_tokens=4,
                do_sample=False,
                pad_token_id=self.tokenizer.eos_token_id
            )
            
            if result and len(result) > 0:
                logger.info("βœ… Smoke test passed")
                return True
            else:
                logger.warning("⚠️ Smoke test returned empty result")
                return False
                
        except Exception as e:
            logger.warning(f"⚠️ Smoke test failed: {e}")
            return False
    
    @property
    def is_loaded(self) -> bool:
        """Check if model is fully loaded and ready."""
        return self._is_loaded and self.pipeline is not None
    
    def get_model_info(self) -> dict:
        """Get information about the loaded model."""
        if not self.is_loaded:
            return {"status": "not_loaded"}
        
        info = {
            "status": "loaded",
            "model_id": self.config.model_id,
            "revision": self.config.revision,
            "device": self.config.device_map,
            "dtype": str(self.config.dtype),
            "attention": self.config.attn_implementation,
            "device_info": self.config.device_info
        }
        
        if hasattr(self.model, 'config'):
            info["architecture"] = getattr(self.model.config, 'architectures', 'unknown')
            info["parameters"] = f"~{self.model.num_parameters() / 1e9:.1f}B"
        
        return info