Spaces:
Sleeping
Sleeping
File size: 9,940 Bytes
6510698 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
"""
Contract tests for Hugging Face API interactions.
These tests verify that our code correctly interacts with external HF services.
They can be run against real APIs or mocked for CI/CD.
"""
import pytest
import os
from unittest.mock import patch, MagicMock
import sys
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent.parent.parent
sys.path.insert(0, str(project_root))
from scripts.select_revision import RevisionSelector
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
class TestHuggingFaceAPIContract:
"""Test contracts with Hugging Face API."""
def setup_method(self):
"""Setup test fixtures."""
self.test_model_id = "microsoft/Phi-3.5-MoE-instruct"
self.selector = RevisionSelector(self.test_model_id)
@pytest.mark.integration
def test_hf_api_connection(self):
"""Test that we can connect to HF API (requires internet)."""
api = HfApi()
try:
# Try to get model info - this should work for public models
model_info = api.model_info(self.test_model_id)
assert model_info is not None
assert model_info.modelId == self.test_model_id
except Exception as e:
pytest.skip(f"Cannot connect to HF API: {e}")
@patch('huggingface_hub.HfApi.list_repo_commits')
def test_get_recent_commits_contract(self, mock_list_commits):
"""Test contract for getting recent commits."""
# Mock commit objects
mock_commits = [
MagicMock(commit_id="abc123"),
MagicMock(commit_id="def456"),
MagicMock(commit_id="ghi789")
]
mock_list_commits.return_value = mock_commits
commits = self.selector.get_recent_commits(max_commits=2)
# Verify API was called correctly
mock_list_commits.assert_called_once_with(
repo_id=self.test_model_id,
repo_type="model"
)
# Verify we got the expected number of commits
assert len(commits) == 2
assert commits == ["abc123", "def456"]
@patch('huggingface_hub.HfApi.list_repo_commits')
def test_get_recent_commits_api_error(self, mock_list_commits):
"""Test handling of API errors when getting commits."""
mock_list_commits.side_effect = RepositoryNotFoundError("Model not found")
commits = self.selector.get_recent_commits()
# Should return empty list on error
assert commits == []
@patch('huggingface_hub.hf_hub_download')
def test_is_cpu_safe_revision_contract(self, mock_download):
"""Test contract for checking CPU-safe revisions."""
# Mock file content without flash_attn imports
mock_file_path = "/tmp/test_modeling.py"
mock_download.return_value = mock_file_path
# Create mock file content
safe_content = """
import torch
import torch.nn as nn
from transformers import PreTrainedModel
class TestModel(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
# No flash_attn imports here
"""
with patch('builtins.open', create=True) as mock_open:
mock_open.return_value.__enter__.return_value.read.return_value = safe_content
result = self.selector.is_cpu_safe_revision("abc123")
# Verify download was called correctly
mock_download.assert_called_once_with(
repo_id=self.test_model_id,
filename="modeling_phimoe.py",
revision="abc123",
repo_type="model",
cache_dir=".cache"
)
assert result is True
@patch('huggingface_hub.hf_hub_download')
def test_is_cpu_safe_revision_with_flash_attn(self, mock_download):
"""Test detection of flash_attn imports."""
mock_file_path = "/tmp/test_modeling.py"
mock_download.return_value = mock_file_path
# Mock file content WITH flash_attn imports
unsafe_content = """
import torch
import torch.nn as nn
import flash_attn
from transformers import PreTrainedModel
class TestModel(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
"""
with patch('builtins.open', create=True) as mock_open:
mock_open.return_value.__enter__.return_value.read.return_value = unsafe_content
result = self.selector.is_cpu_safe_revision("abc123")
assert result is False
@patch('huggingface_hub.hf_hub_download')
def test_is_cpu_safe_revision_download_error(self, mock_download):
"""Test handling of download errors."""
mock_download.side_effect = RevisionNotFoundError("Revision not found")
result = self.selector.is_cpu_safe_revision("nonexistent")
# Should return False on download error
assert result is False
def test_save_revision_to_env_contract(self):
"""Test contract for saving revision to .env file."""
test_revision = "abc123def456"
# Use a temporary file for testing
import tempfile
with tempfile.NamedTemporaryFile(mode='w+', suffix='.env', delete=False) as tmp_file:
tmp_path = Path(tmp_file.name)
try:
# Patch the ENV_FILE path
with patch('scripts.select_revision.ENV_FILE', tmp_path):
self.selector.save_revision_to_env(test_revision)
# Verify file was written correctly
content = tmp_path.read_text()
assert f"HF_REVISION={test_revision}" in content
finally:
# Clean up
if tmp_path.exists():
tmp_path.unlink()
def test_save_revision_to_env_existing_file(self):
"""Test saving revision when .env file already exists."""
test_revision = "new123revision"
existing_content = """
# Existing env file
SOME_VAR=value
HF_REVISION=old123revision
OTHER_VAR=other_value
"""
import tempfile
with tempfile.NamedTemporaryFile(mode='w+', suffix='.env', delete=False) as tmp_file:
tmp_file.write(existing_content)
tmp_file.flush()
tmp_path = Path(tmp_file.name)
try:
with patch('scripts.select_revision.ENV_FILE', tmp_path):
self.selector.save_revision_to_env(test_revision)
content = tmp_path.read_text()
# Should have new revision
assert f"HF_REVISION={test_revision}" in content
# Should not have old revision
assert "HF_REVISION=old123revision" not in content
# Should preserve other variables
assert "SOME_VAR=value" in content
assert "OTHER_VAR=other_value" in content
finally:
if tmp_path.exists():
tmp_path.unlink()
class TestTransformersContract:
"""Test contracts with transformers library."""
@patch('transformers.AutoTokenizer.from_pretrained')
def test_tokenizer_loading_contract(self, mock_tokenizer):
"""Test contract for tokenizer loading."""
mock_tokenizer_instance = MagicMock()
mock_tokenizer.return_value = mock_tokenizer_instance
from app.model_loader import ModelLoader
loader = ModelLoader()
# Create a minimal config
from app.config.model_config import ModelConfig
import torch
loader.config = ModelConfig(
model_id="test/model",
revision="main",
dtype=torch.float32,
device_map="cpu",
attn_implementation="eager",
low_cpu_mem_usage=True,
trust_remote_code=True
)
result = loader.load_tokenizer()
# Verify tokenizer was called with correct parameters
mock_tokenizer.assert_called_once_with(
"test/model",
trust_remote_code=True,
revision="main"
)
assert result is True
assert loader.tokenizer == mock_tokenizer_instance
@patch('transformers.AutoModelForCausalLM.from_pretrained')
def test_model_loading_contract(self, mock_model):
"""Test contract for model loading."""
mock_model_instance = MagicMock()
mock_model_instance.eval.return_value = mock_model_instance
mock_model.return_value = mock_model_instance
from app.model_loader import ModelLoader
loader = ModelLoader()
# Create a minimal config
from app.config.model_config import ModelConfig
import torch
loader.config = ModelConfig(
model_id="test/model",
revision="main",
dtype=torch.float32,
device_map="cpu",
attn_implementation="eager",
low_cpu_mem_usage=True,
trust_remote_code=True
)
result = loader.load_model()
# Verify model was called with correct parameters
mock_model.assert_called_once_with(
"test/model",
trust_remote_code=True,
revision="main",
attn_implementation="eager",
dtype=torch.float32, # Should use dtype, not torch_dtype
device_map="cpu",
low_cpu_mem_usage=True
)
# Verify eval() was called
mock_model_instance.eval.assert_called_once()
assert result is True
assert loader.model == mock_model_instance
if __name__ == "__main__":
pytest.main([__file__])
|