""" Integration tests for full application workflow. These tests verify that all components work together correctly in both CPU and GPU environments. """ import pytest import os import sys import tempfile from pathlib import Path from unittest.mock import patch, MagicMock # Add project root to path project_root = Path(__file__).parent.parent.parent sys.path.insert(0, str(project_root)) from app.model_loader import ModelLoader from app.interface import GradioInterface from app.config.model_config import EnvironmentDetector, DependencyValidator class TestCPUWorkflow: """Test complete workflow in CPU environment.""" @patch('torch.cuda.is_available') @patch('app.config.model_config.DependencyValidator.is_environment_ready') def test_cpu_environment_detection(self, mock_env_ready, mock_cuda): """Test CPU environment is detected correctly.""" mock_cuda.return_value = False mock_env_ready.return_value = True config = EnvironmentDetector.create_model_config() assert config.device_map == "cpu" assert config.dtype.name == "float32" # torch.float32 assert config.attn_implementation == "eager" assert config.low_cpu_mem_usage is True @patch('torch.cuda.is_available') @patch('app.model_loader.DependencyValidator.is_environment_ready') @patch('transformers.AutoTokenizer.from_pretrained') @patch('transformers.AutoModelForCausalLM.from_pretrained') @patch('transformers.pipeline') def test_cpu_model_loading_workflow(self, mock_pipeline, mock_model, mock_tokenizer, mock_env_ready, mock_cuda): """Test complete model loading workflow on CPU.""" # Setup mocks mock_cuda.return_value = False mock_env_ready.return_value = True mock_tokenizer_instance = MagicMock() mock_tokenizer.return_value = mock_tokenizer_instance mock_model_instance = MagicMock() mock_model_instance.eval.return_value = mock_model_instance mock_model_instance.num_parameters.return_value = 41900000000 # 41.9B mock_model.return_value = mock_model_instance mock_pipeline_instance = MagicMock() mock_pipeline.return_value = mock_pipeline_instance # Mock successful pipeline test mock_pipeline_instance.return_value = [{"generated_text": "Hello world"}] # Test the workflow loader = ModelLoader() success = loader.load_complete_model() assert success is True assert loader.is_loaded is True # Verify CPU-specific parameters were used model_call_args = mock_model.call_args assert model_call_args[1]['device_map'] == "cpu" assert model_call_args[1]['dtype'].name == "float32" # torch.float32 assert model_call_args[1]['attn_implementation'] == "eager" assert model_call_args[1]['low_cpu_mem_usage'] is True @patch('torch.cuda.is_available') def test_cpu_interface_creation(self, mock_cuda): """Test Gradio interface creation in CPU environment.""" mock_cuda.return_value = False # Create mock model loader mock_loader = MagicMock(spec=ModelLoader) mock_loader.is_loaded = False mock_loader.get_model_info.return_value = {"status": "not_loaded"} # Create interface interface = GradioInterface(mock_loader) # This should not raise an exception with patch('gradio.Blocks') as mock_blocks: demo = interface.create_interface() mock_blocks.assert_called_once() class TestGPUWorkflow: """Test complete workflow in GPU environment.""" @patch('torch.cuda.is_available') @patch('app.config.model_config.DependencyValidator.is_environment_ready') def test_gpu_environment_detection(self, mock_env_ready, mock_cuda): """Test GPU environment is detected correctly.""" mock_cuda.return_value = True mock_env_ready.return_value = True config = EnvironmentDetector.create_model_config() assert config.device_map == "auto" assert config.dtype.name == "bfloat16" # torch.bfloat16 assert config.attn_implementation == "sdpa" assert config.low_cpu_mem_usage is False @patch('torch.cuda.is_available') @patch('app.model_loader.DependencyValidator.is_environment_ready') @patch('transformers.AutoTokenizer.from_pretrained') @patch('transformers.AutoModelForCausalLM.from_pretrained') @patch('transformers.pipeline') def test_gpu_model_loading_workflow(self, mock_pipeline, mock_model, mock_tokenizer, mock_env_ready, mock_cuda): """Test complete model loading workflow on GPU.""" # Setup mocks mock_cuda.return_value = True mock_env_ready.return_value = True mock_tokenizer_instance = MagicMock() mock_tokenizer.return_value = mock_tokenizer_instance mock_model_instance = MagicMock() mock_model_instance.eval.return_value = mock_model_instance mock_model_instance.num_parameters.return_value = 41900000000 # 41.9B mock_model.return_value = mock_model_instance mock_pipeline_instance = MagicMock() mock_pipeline.return_value = mock_pipeline_instance # Mock successful pipeline test mock_pipeline_instance.return_value = [{"generated_text": "Hello world"}] # Test the workflow loader = ModelLoader() success = loader.load_complete_model() assert success is True assert loader.is_loaded is True # Verify GPU-specific parameters were used model_call_args = mock_model.call_args assert model_call_args[1]['device_map'] == "auto" assert model_call_args[1]['dtype'].name == "bfloat16" # torch.bfloat16 assert model_call_args[1]['attn_implementation'] == "sdpa" assert model_call_args[1]['low_cpu_mem_usage'] is False class TestEnvironmentVariableWorkflow: """Test workflow with environment variables.""" @patch.dict(os.environ, { 'HF_MODEL_ID': 'custom/test-model', 'HF_REVISION': 'test-revision-123' }) @patch('torch.cuda.is_available') @patch('app.model_loader.DependencyValidator.is_environment_ready') @patch('transformers.AutoTokenizer.from_pretrained') @patch('transformers.AutoModelForCausalLM.from_pretrained') def test_environment_variables_respected(self, mock_model, mock_tokenizer, mock_env_ready, mock_cuda): """Test that environment variables are properly used.""" mock_cuda.return_value = False mock_env_ready.return_value = True mock_tokenizer.return_value = MagicMock() mock_model_instance = MagicMock() mock_model_instance.eval.return_value = mock_model_instance mock_model.return_value = mock_model_instance loader = ModelLoader() loader.create_config() # Verify environment variables were used assert loader.config.model_id == "custom/test-model" assert loader.config.revision == "test-revision-123" # Try loading tokenizer loader.load_tokenizer() # Verify tokenizer was called with env vars mock_tokenizer.assert_called_once_with( "custom/test-model", trust_remote_code=True, revision="test-revision-123" ) class TestErrorHandlingWorkflow: """Test error handling in complete workflow.""" @patch('app.model_loader.DependencyValidator.is_environment_ready') def test_missing_dependencies_workflow(self, mock_env_ready): """Test workflow when dependencies are missing.""" mock_env_ready.return_value = False loader = ModelLoader() success = loader.load_complete_model() assert success is False assert loader.is_loaded is False @patch('app.model_loader.DependencyValidator.is_environment_ready') @patch('transformers.AutoTokenizer.from_pretrained') def test_tokenizer_loading_failure(self, mock_tokenizer, mock_env_ready): """Test workflow when tokenizer loading fails.""" mock_env_ready.return_value = True mock_tokenizer.side_effect = Exception("Tokenizer loading failed") loader = ModelLoader() success = loader.load_complete_model() assert success is False assert loader.is_loaded is False @patch('app.model_loader.DependencyValidator.is_environment_ready') @patch('transformers.AutoTokenizer.from_pretrained') @patch('transformers.AutoModelForCausalLM.from_pretrained') def test_model_loading_failure(self, mock_model, mock_tokenizer, mock_env_ready): """Test workflow when model loading fails.""" mock_env_ready.return_value = True mock_tokenizer.return_value = MagicMock() mock_model.side_effect = Exception("Model loading failed") loader = ModelLoader() success = loader.load_complete_model() assert success is False assert loader.is_loaded is False def test_interface_with_failed_model_loading(self): """Test interface creation when model loading fails.""" # Create loader with failed loading loader = MagicMock(spec=ModelLoader) loader.is_loaded = False loader.get_model_info.return_value = {"status": "not_loaded"} # Create interface interface = GradioInterface(loader) # Test response generation in fallback mode response = interface.response_generator.generate_response("Test query") assert "model is currently unavailable" in response assert "Expert Type:" in response class TestRevisionSelectionWorkflow: """Test revision selection workflow.""" @patch('torch.cuda.is_available') @patch.dict(os.environ, {}, clear=True) @patch('scripts.select_revision.RevisionSelector.find_cpu_safe_revision') @patch('scripts.select_revision.RevisionSelector.save_revision_to_env') def test_cpu_revision_selection_workflow(self, mock_save, mock_find, mock_cuda): """Test CPU revision selection workflow.""" mock_cuda.return_value = False mock_find.return_value = "safe-revision-123" from scripts.select_revision import main result = main() assert result == 0 mock_find.assert_called_once() mock_save.assert_called_once_with("safe-revision-123") @patch('torch.cuda.is_available') def test_gpu_skips_revision_selection(self, mock_cuda): """Test that GPU environment skips revision selection.""" mock_cuda.return_value = True from scripts.select_revision import main result = main() assert result == 0 # Should exit early with success @patch('torch.cuda.is_available') @patch.dict(os.environ, {'HF_REVISION': 'existing-revision'}) def test_existing_revision_skips_selection(self, mock_cuda): """Test that existing revision skips selection.""" mock_cuda.return_value = False # CPU environment from scripts.select_revision import main result = main() assert result == 0 # Should exit early with success class TestPreStartWorkflow: """Test prestart script workflow.""" def test_prestart_script_exists_and_executable(self): """Test that prestart script exists and is executable.""" prestart_path = project_root / "prestart.sh" assert prestart_path.exists(), "prestart.sh should exist" assert os.access(prestart_path, os.X_OK), "prestart.sh should be executable" @patch('subprocess.check_call') @patch('torch.cuda.is_available') def test_prestart_cpu_workflow(self, mock_cuda, mock_subprocess): """Test prestart workflow on CPU.""" mock_cuda.return_value = False # This would normally be tested by running the actual script # but for unit testing we verify the logic components # The prestart script should: # 1. Install core dependencies # 2. Skip flash-attn installation # 3. Run revision selector # We can't easily test the bash script directly in pytest, # but we can verify the Python components it calls work correctly assert True # Placeholder for actual script testing if __name__ == "__main__": pytest.main([__file__])