Update src/DetectLM.py
Browse files- src/DetectLM.py +94 -28
src/DetectLM.py
CHANGED
|
@@ -3,6 +3,9 @@ import pandas as pd
|
|
| 3 |
from multitest import MultiTest
|
| 4 |
from tqdm import tqdm
|
| 5 |
import logging
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def truncae_to_max_no_tokens(text, max_no_tokens):
|
|
@@ -11,8 +14,8 @@ def truncae_to_max_no_tokens(text, max_no_tokens):
|
|
| 11 |
|
| 12 |
class DetectLM(object):
|
| 13 |
def __init__(self, sentence_detection_function, survival_function_per_length,
|
| 14 |
-
min_len=
|
| 15 |
-
length_limit_policy='truncate', ignore_first_sentence=False):
|
| 16 |
"""
|
| 17 |
Test for the presence of sentences of irregular origin as reflected by the
|
| 18 |
sentence_detection_function. The test is based on the sentence detection function
|
|
@@ -31,7 +34,10 @@ class DetectLM(object):
|
|
| 31 |
'ignore': do not evaluate the response and P-value for this sentence
|
| 32 |
'max_available': use the logloss function of the maximal available length
|
| 33 |
:ignore_first_sentence: whether to ignore the first sentence in the document or not. Useful when assuming
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
| 35 |
"""
|
| 36 |
|
| 37 |
self.survival_function_per_length = survival_function_per_length
|
|
@@ -43,6 +49,16 @@ class DetectLM(object):
|
|
| 43 |
self.HC_stbl = True if HC_type == 'stbl' else False
|
| 44 |
self.gamma = gamma
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def _logperp(self, sent: str, context=None) -> float:
|
| 47 |
return float(self.sentence_detector(sent, context))
|
| 48 |
|
|
@@ -75,7 +91,11 @@ class DetectLM(object):
|
|
| 75 |
comment = "exceeding length limit; resorting to max-available length"
|
| 76 |
length = self.max_len
|
| 77 |
pval = self.survival_function_per_length(length, response)
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
return dict(response=response,
|
| 80 |
pvalue=pval,
|
| 81 |
length=length,
|
|
@@ -88,18 +108,37 @@ class DetectLM(object):
|
|
| 88 |
comment=comment)
|
| 89 |
|
| 90 |
def _get_pvals(self, responses: list, lengths: list) -> tuple:
|
|
|
|
|
|
|
|
|
|
| 91 |
pvals = []
|
| 92 |
comments = []
|
| 93 |
for response, length in zip(responses, lengths):
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
pvals.append(float(r['pvalue']))
|
| 96 |
comments.append(r['comment'])
|
| 97 |
return pvals, comments
|
| 98 |
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
def _get_responses(self, sentences: list, contexts: list) -> list:
|
| 101 |
"""
|
| 102 |
-
Compute response and length of a
|
| 103 |
"""
|
| 104 |
assert len(sentences) == len(contexts)
|
| 105 |
|
|
@@ -110,14 +149,20 @@ class DetectLM(object):
|
|
| 110 |
length = self._get_length(sent)
|
| 111 |
if self.length_limit_policy == 'truncate':
|
| 112 |
sent = truncae_to_max_no_tokens(sent, self.max_len)
|
| 113 |
-
if length == 1:
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
try:
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
except:
|
| 120 |
-
# something unusual happened...
|
| 121 |
import pdb; pdb.set_trace()
|
| 122 |
lengths.append(length)
|
| 123 |
return responses, lengths
|
|
@@ -130,22 +175,9 @@ class DetectLM(object):
|
|
| 130 |
|
| 131 |
responses, lengths = self._get_responses(sentences, contexts)
|
| 132 |
pvals, comments = self._get_pvals(responses, lengths)
|
| 133 |
-
|
| 134 |
return pvals, responses, comments
|
| 135 |
|
| 136 |
-
|
| 137 |
-
def testHC(self, sentences: list) -> float:
|
| 138 |
-
pvals = np.array(self.get_pvals(sentences)[1])
|
| 139 |
-
mt = MultiTest(pvals, stbl=self.HC_stbl)
|
| 140 |
-
return mt.hc(gamma=self.gamma)[0]
|
| 141 |
-
|
| 142 |
-
def testFisher(self, sentences: list) -> dict:
|
| 143 |
-
pvals = np.array(self.get_pvals(sentences)[1])
|
| 144 |
-
print(pvals)
|
| 145 |
-
mt = MultiTest(pvals, stbl=self.HC_stbl)
|
| 146 |
-
return dict(zip(['Fn', 'pvalue'], mt.fisher()))
|
| 147 |
-
|
| 148 |
-
def _test_chunked_doc(self, lo_chunks: list, lo_contexts: list) -> tuple:
|
| 149 |
pvals, responses, comments = self.get_pvals(lo_chunks, lo_contexts)
|
| 150 |
if self.ignore_first_sentence:
|
| 151 |
pvals[0] = np.nan
|
|
@@ -173,7 +205,41 @@ class DetectLM(object):
|
|
| 173 |
df['mask'] = df['pvalue'] <= hct
|
| 174 |
if dashboard:
|
| 175 |
mt.hc_dashboard(gamma=self.gamma)
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
def __call__(self, lo_chunks: list, lo_contexts: list, dashboard=False) -> dict:
|
| 179 |
return self.test_chunked_doc(lo_chunks, lo_contexts, dashboard=dashboard)
|
|
|
|
| 3 |
from multitest import MultiTest
|
| 4 |
from tqdm import tqdm
|
| 5 |
import logging
|
| 6 |
+
import json
|
| 7 |
+
import re
|
| 8 |
+
GAMMA = 0.45
|
| 9 |
|
| 10 |
|
| 11 |
def truncae_to_max_no_tokens(text, max_no_tokens):
|
|
|
|
| 14 |
|
| 15 |
class DetectLM(object):
|
| 16 |
def __init__(self, sentence_detection_function, survival_function_per_length,
|
| 17 |
+
min_len=1, max_len=100, HC_type="stbl", gamma=GAMMA,
|
| 18 |
+
length_limit_policy='truncate', ignore_first_sentence=False, cache_logloss_path=''):
|
| 19 |
"""
|
| 20 |
Test for the presence of sentences of irregular origin as reflected by the
|
| 21 |
sentence_detection_function. The test is based on the sentence detection function
|
|
|
|
| 34 |
'ignore': do not evaluate the response and P-value for this sentence
|
| 35 |
'max_available': use the logloss function of the maximal available length
|
| 36 |
:ignore_first_sentence: whether to ignore the first sentence in the document or not. Useful when assuming
|
| 37 |
+
that the first sentence is a title or a header or a context of the form previous sentence.
|
| 38 |
+
:HC_type: 'stbl' True for the 2008 HC version, otherwise uses the 2004 version.
|
| 39 |
+
:gamma: the gamma parameter of the HC test.
|
| 40 |
+
:cache_logloss_path: cache dict to restore the logloss faster
|
| 41 |
"""
|
| 42 |
|
| 43 |
self.survival_function_per_length = survival_function_per_length
|
|
|
|
| 49 |
self.HC_stbl = True if HC_type == 'stbl' else False
|
| 50 |
self.gamma = gamma
|
| 51 |
|
| 52 |
+
# Idan 26/05/204
|
| 53 |
+
self.cache_logloss_path = cache_logloss_path
|
| 54 |
+
try:
|
| 55 |
+
# Load the dictionary from the file
|
| 56 |
+
with open(self.cache_logloss_path, 'r') as file:
|
| 57 |
+
self.cache_logloss = json.load(file)
|
| 58 |
+
except:
|
| 59 |
+
print('Could not find cache file')
|
| 60 |
+
self.cache_logloss = None
|
| 61 |
+
|
| 62 |
def _logperp(self, sent: str, context=None) -> float:
|
| 63 |
return float(self.sentence_detector(sent, context))
|
| 64 |
|
|
|
|
| 91 |
comment = "exceeding length limit; resorting to max-available length"
|
| 92 |
length = self.max_len
|
| 93 |
pval = self.survival_function_per_length(length, response)
|
| 94 |
+
try:
|
| 95 |
+
assert pval >= 0, "Negative P-value. Something is wrong."
|
| 96 |
+
except:
|
| 97 |
+
import pdb; pdb.set_trace()
|
| 98 |
+
|
| 99 |
return dict(response=response,
|
| 100 |
pvalue=pval,
|
| 101 |
length=length,
|
|
|
|
| 108 |
comment=comment)
|
| 109 |
|
| 110 |
def _get_pvals(self, responses: list, lengths: list) -> tuple:
|
| 111 |
+
"""
|
| 112 |
+
Pvalues from responses and lengths
|
| 113 |
+
"""
|
| 114 |
pvals = []
|
| 115 |
comments = []
|
| 116 |
for response, length in zip(responses, lengths):
|
| 117 |
+
if not np.isnan(response):
|
| 118 |
+
r = self._test_response(response, length)
|
| 119 |
+
else:
|
| 120 |
+
r = dict(response=response, pvalue=np.nan, length=length, comment="ignored (no response)")
|
| 121 |
pvals.append(float(r['pvalue']))
|
| 122 |
comments.append(r['comment'])
|
| 123 |
return pvals, comments
|
| 124 |
|
| 125 |
+
def clean_string(self, s):
|
| 126 |
+
# Remove escape characters
|
| 127 |
+
s = re.sub(r'\\[nrt]', '', s)
|
| 128 |
+
# Strip leading and trailing spaces and quotes
|
| 129 |
+
s = s.strip().strip("'")
|
| 130 |
+
# Convert to lower case
|
| 131 |
+
return s.lower()
|
| 132 |
+
|
| 133 |
+
def _get_logloss_cache(self, sent: str) -> float:
|
| 134 |
+
sent = sent.strip()
|
| 135 |
+
if self.cache_logloss is None: return None
|
| 136 |
+
if sent not in self.cache_logloss: return None
|
| 137 |
+
return self.cache_logloss[sent]
|
| 138 |
+
|
| 139 |
def _get_responses(self, sentences: list, contexts: list) -> list:
|
| 140 |
"""
|
| 141 |
+
Compute response and length of a every sentence in a list
|
| 142 |
"""
|
| 143 |
assert len(sentences) == len(contexts)
|
| 144 |
|
|
|
|
| 149 |
length = self._get_length(sent)
|
| 150 |
if self.length_limit_policy == 'truncate':
|
| 151 |
sent = truncae_to_max_no_tokens(sent, self.max_len)
|
| 152 |
+
# if length == 1:
|
| 153 |
+
# logging.warning(f"Sentence {sent} is too short. Skipping.")
|
| 154 |
+
# responses.append(np.nan)
|
| 155 |
+
# continue
|
| 156 |
try:
|
| 157 |
+
# Try getting logloss from cache
|
| 158 |
+
sentence_response = self._get_logloss_cache(self.clean_string(sent))
|
| 159 |
+
if sentence_response != None:
|
| 160 |
+
responses.append(sentence_response)
|
| 161 |
+
else: # If sentence not found
|
| 162 |
+
current_response = self._test_sentence(sent, ctx)
|
| 163 |
+
responses.append(current_response)
|
| 164 |
except:
|
| 165 |
+
# something unusual has happened...
|
| 166 |
import pdb; pdb.set_trace()
|
| 167 |
lengths.append(length)
|
| 168 |
return responses, lengths
|
|
|
|
| 175 |
|
| 176 |
responses, lengths = self._get_responses(sentences, contexts)
|
| 177 |
pvals, comments = self._get_pvals(responses, lengths)
|
|
|
|
| 178 |
return pvals, responses, comments
|
| 179 |
|
| 180 |
+
def _test_chunked_doc(self, lo_chunks: list, lo_contexts: list) -> (MultiTest, pd.DataFrame):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
pvals, responses, comments = self.get_pvals(lo_chunks, lo_contexts)
|
| 182 |
if self.ignore_first_sentence:
|
| 183 |
pvals[0] = np.nan
|
|
|
|
| 205 |
df['mask'] = df['pvalue'] <= hct
|
| 206 |
if dashboard:
|
| 207 |
mt.hc_dashboard(gamma=self.gamma)
|
| 208 |
+
|
| 209 |
+
dc = dict(sentences=df, HC=hc, fisher=fisher[0], fisher_pvalue=fisher[1], minP=mt.minp(), bonf=mt.bonfferoni())
|
| 210 |
+
return dc
|
| 211 |
+
|
| 212 |
+
def from_responses(self, responses: list, lengths: list, dashboard=False) -> dict:
|
| 213 |
+
"""
|
| 214 |
+
Compute P-values from responses and lengths
|
| 215 |
+
"""
|
| 216 |
|
| 217 |
+
pvals, comments = self._get_pvals(responses, lengths)
|
| 218 |
+
if self.ignore_first_sentence:
|
| 219 |
+
pvals[0] = np.nan
|
| 220 |
+
logging.info('Ignoring the first sentence.')
|
| 221 |
+
comments[0] = "ignored (first sentence)"
|
| 222 |
+
|
| 223 |
+
df = pd.DataFrame({'response': responses, 'pvalue': pvals, 'comment': comments},
|
| 224 |
+
index=range(len(responses)))
|
| 225 |
+
df_test = df[~df.pvalue.isna()]
|
| 226 |
+
if df_test.empty:
|
| 227 |
+
logging.warning('No valid chunks to test.')
|
| 228 |
+
return None, df
|
| 229 |
+
mt = MultiTest(df_test.pvalue, stbl=self.HC_stbl)
|
| 230 |
+
|
| 231 |
+
if mt is None:
|
| 232 |
+
hc = np.nan
|
| 233 |
+
fisher = (np.nan, np.nan)
|
| 234 |
+
df['mask'] = pd.NA
|
| 235 |
+
else:
|
| 236 |
+
hc, hct = mt.hc(gamma=self.gamma)
|
| 237 |
+
fisher = mt.fisher()
|
| 238 |
+
bonferroni = mt.bonfferoni()
|
| 239 |
+
df['mask'] = df['pvalue'] <= hct
|
| 240 |
+
if dashboard:
|
| 241 |
+
mt.hc_dashboard(gamma=self.gamma)
|
| 242 |
+
return dict(sentences=df, HC=hc, fisher=fisher[0], fisher_pvalue=fisher[1], bonf=bonferroni)
|
| 243 |
+
|
| 244 |
def __call__(self, lo_chunks: list, lo_contexts: list, dashboard=False) -> dict:
|
| 245 |
return self.test_chunked_doc(lo_chunks, lo_contexts, dashboard=dashboard)
|