Update human_text_detect.py
Browse files- human_text_detect.py +6 -17
human_text_detect.py
CHANGED
|
@@ -87,7 +87,7 @@ def detect_human_text(model_name, topic, text):
|
|
| 87 |
df_null = df_null[df_null.num > 1]
|
| 88 |
|
| 89 |
# Get survival function
|
| 90 |
-
|
| 91 |
pval_functions = get_survival_function(df_null, G=43)
|
| 92 |
|
| 93 |
min_tokens_per_sentence = 10
|
|
@@ -95,30 +95,19 @@ def detect_human_text(model_name, topic, text):
|
|
| 95 |
|
| 96 |
cache_dir = f"/tmp/cacheHuggingface/{model_name}"
|
| 97 |
|
| 98 |
-
print('Create dir')
|
| 99 |
-
# Use a writable directory inside the Hugging Face Space
|
| 100 |
-
# os.makedirs("/tmp/cacheHuggingface/PHI2", exist_ok=True)
|
| 101 |
-
# os.makedirs("/tmp/cacheHuggingface/GPT2XL", exist_ok=True)
|
| 102 |
-
|
| 103 |
# Init model
|
| 104 |
print('Init tokenizer')
|
| 105 |
lm_name = 'gpt2-xl' if model_name == 'GPT2XL' else 'microsoft/phi-2'
|
| 106 |
tokenizer = AutoTokenizer.from_pretrained(lm_name, cache_dir=cache_dir)
|
| 107 |
-
|
| 108 |
-
print("Before saved tokenizer files in:", cache_dir)
|
| 109 |
-
print(os.listdir(cache_dir))
|
| 110 |
|
| 111 |
-
print("Save tokenizer")
|
| 112 |
-
tokenizer.save_pretrained(cache_dir)
|
| 113 |
-
|
| 114 |
-
print("Checking saved tokenizer files in:", cache_dir)
|
| 115 |
-
print(os.listdir(cache_dir))
|
| 116 |
|
| 117 |
print('Init model')
|
| 118 |
-
model = AutoModelForCausalLM.from_pretrained(lm_name
|
| 119 |
|
| 120 |
-
print("Save model")
|
| 121 |
-
model.save_pretrained(cache_dir)
|
| 122 |
|
| 123 |
print('Init PerplexityEvaluator')
|
| 124 |
sentence_detector = PerplexityEvaluator(model, tokenizer)
|
|
|
|
| 87 |
df_null = df_null[df_null.num > 1]
|
| 88 |
|
| 89 |
# Get survival function
|
| 90 |
+
print('Get survival function')
|
| 91 |
pval_functions = get_survival_function(df_null, G=43)
|
| 92 |
|
| 93 |
min_tokens_per_sentence = 10
|
|
|
|
| 95 |
|
| 96 |
cache_dir = f"/tmp/cacheHuggingface/{model_name}"
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# Init model
|
| 99 |
print('Init tokenizer')
|
| 100 |
lm_name = 'gpt2-xl' if model_name == 'GPT2XL' else 'microsoft/phi-2'
|
| 101 |
tokenizer = AutoTokenizer.from_pretrained(lm_name, cache_dir=cache_dir)
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
# print("Save tokenizer")
|
| 104 |
+
# tokenizer.save_pretrained(cache_dir)
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
print('Init model')
|
| 107 |
+
model = AutoModelForCausalLM.from_pretrained(lm_name, cache_dir=cache_dir)
|
| 108 |
|
| 109 |
+
# print("Save model")
|
| 110 |
+
# model.save_pretrained(cache_dir)
|
| 111 |
|
| 112 |
print('Init PerplexityEvaluator')
|
| 113 |
sentence_detector = PerplexityEvaluator(model, tokenizer)
|