Spaces:
Sleeping
Sleeping
Automatically delete after 10 minutes.
Browse files
app.py
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
-
import torch
|
| 2 |
from meshgpt_pytorch import (
|
| 3 |
MeshTransformer,
|
| 4 |
mesh_render
|
| 5 |
)
|
| 6 |
import igl
|
| 7 |
-
|
| 8 |
import gradio as gr
|
| 9 |
-
import numpy as np
|
| 10 |
import tempfile
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
transformer = MeshTransformer.from_pretrained("MarcusLoren/MeshGPT-preview")
|
| 13 |
|
|
@@ -20,6 +20,11 @@ def save_as_obj(file_path):
|
|
| 20 |
return file_path
|
| 21 |
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def predict(text, num_input, num_temp):
|
| 24 |
transformer.eval()
|
| 25 |
labels = [label.strip() for label in text.split(',')]
|
|
@@ -32,7 +37,10 @@ def predict(text, num_input, num_temp):
|
|
| 32 |
|
| 33 |
with tempfile.NamedTemporaryFile(suffix=".obj", delete=False) as temp_file:
|
| 34 |
mesh_render.save_rendering(temp_file.name, output)
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
gradio_app = gr.Interface(
|
| 38 |
predict,
|
|
|
|
|
|
|
| 1 |
from meshgpt_pytorch import (
|
| 2 |
MeshTransformer,
|
| 3 |
mesh_render
|
| 4 |
)
|
| 5 |
import igl
|
|
|
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
import tempfile
|
| 8 |
+
import os
|
| 9 |
+
import threading
|
| 10 |
+
import time
|
| 11 |
|
| 12 |
transformer = MeshTransformer.from_pretrained("MarcusLoren/MeshGPT-preview")
|
| 13 |
|
|
|
|
| 20 |
return file_path
|
| 21 |
|
| 22 |
|
| 23 |
+
def delete_file_after_ten_minutes(filename):
|
| 24 |
+
time.sleep(600) # Wait for 10 minutes
|
| 25 |
+
os.remove(filename)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
def predict(text, num_input, num_temp):
|
| 29 |
transformer.eval()
|
| 30 |
labels = [label.strip() for label in text.split(',')]
|
|
|
|
| 37 |
|
| 38 |
with tempfile.NamedTemporaryFile(suffix=".obj", delete=False) as temp_file:
|
| 39 |
mesh_render.save_rendering(temp_file.name, output)
|
| 40 |
+
result = save_as_obj(temp_file.name)
|
| 41 |
+
threading.Thread(target=delete_file_after_ten_minutes, args=(temp_file.name,)).start()
|
| 42 |
+
|
| 43 |
+
return result
|
| 44 |
|
| 45 |
gradio_app = gr.Interface(
|
| 46 |
predict,
|