Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,513 Bytes
546ff88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
"""
Artist Style Embedding - Evaluation and Inference
"""
import argparse
from pathlib import Path
from typing import Dict, List, Tuple
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from PIL import Image
import numpy as np
from tqdm import tqdm
from sklearn.manifold import TSNE
try:
import matplotlib.pyplot as plt
PLOT_AVAILABLE = True
except ImportError:
PLOT_AVAILABLE = False
from config import get_config
from model import ArtistStyleModel
from dataset import ArtistDataset, build_dataset_splits, collate_fn
class ArtistEmbeddingInference:
"""Inference class for artist style embedding"""
def __init__(self, checkpoint_path: str, device: str = 'cuda'):
requested_device = device
if requested_device.startswith('cuda') and not torch.cuda.is_available():
print(
"[WARN] --device=cuda requested but torch.cuda.is_available() is False. "
"Falling back to CPU. (Install a CUDA-enabled PyTorch build to use GPU.)"
)
requested_device = 'cpu'
self.device = torch.device(requested_device)
# Always load checkpoint on CPU to avoid duplicating large tensors on GPU.
checkpoint = torch.load(checkpoint_path, map_location='cpu')
self.artist_to_idx = checkpoint['artist_to_idx']
self.idx_to_artist = {v: k for k, v in self.artist_to_idx.items()}
config = get_config()
self.model = ArtistStyleModel(
num_classes=len(self.artist_to_idx),
embedding_dim=config.model.embedding_dim,
hidden_dim=config.model.hidden_dim,
)
self.model.load_state_dict(checkpoint['model_state_dict'])
# Reduce VRAM: keep weights in FP16 on CUDA.
if self.device.type == 'cuda':
self.model = self.model.to(dtype=torch.float16)
self.model = self.model.to(self.device)
self.model.eval()
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def get_embedding(self, image: Image.Image) -> torch.Tensor:
tensor = self.transform(image).unsqueeze(0).to(self.device)
placeholder = torch.zeros(1, 3, 224, 224).to(self.device)
has_false = torch.tensor([False]).to(self.device)
with torch.no_grad():
embedding = self.model.get_embeddings(tensor, placeholder, placeholder, has_false, has_false)
return embedding.squeeze(0)
def predict_artist(self, image: Image.Image, top_k: int = 5) -> List[Tuple[str, float]]:
tensor = self.transform(image).unsqueeze(0).to(self.device)
placeholder = torch.zeros(1, 3, 224, 224).to(self.device)
has_false = torch.tensor([False]).to(self.device)
with torch.no_grad():
output = self.model(tensor, placeholder, placeholder, has_false, has_false)
probs = F.softmax(output['cosine'].squeeze(0), dim=0)
top_probs, top_indices = probs.topk(top_k)
return [(self.idx_to_artist[idx.item()], prob.item()) for prob, idx in zip(top_probs, top_indices)]
def evaluate_model(checkpoint_path: str, dataset_root: str, dataset_face_root: str, dataset_eyes_root: str, device: str = 'cuda'):
inference = ArtistEmbeddingInference(checkpoint_path, device)
config = get_config()
artist_to_idx, full_splits, face_splits, eye_splits = build_dataset_splits(
dataset_root, dataset_face_root, dataset_eyes_root,
min_images=config.data.min_images_per_artist
)
test_dataset = ArtistDataset(
dataset_root, dataset_face_root, dataset_eyes_root,
artist_to_idx, full_splits['test'], face_splits['test'], eye_splits['test'],
is_training=False
)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4, collate_fn=collate_fn)
total_correct = 0
total_correct_top5 = 0
total_samples = 0
for batch in tqdm(test_loader, desc="Evaluating"):
full = batch['full'].to(inference.device)
face = batch['face'].to(inference.device)
eye = batch['eye'].to(inference.device)
has_face = batch['has_face'].to(inference.device)
has_eye = batch['has_eye'].to(inference.device)
labels = batch['label'].to(inference.device)
with torch.no_grad():
output = inference.model(full, face, eye, has_face, has_eye)
# Top-1
preds = output['cosine'].argmax(dim=1)
total_correct += (preds == labels).sum().item()
# Top-5
_, top5_preds = output['cosine'].topk(5, dim=1)
top5_correct = top5_preds.eq(labels.view(-1, 1).expand_as(top5_preds))
total_correct_top5 += top5_correct.any(dim=1).sum().item()
total_samples += labels.size(0)
accuracy = total_correct / total_samples if total_samples > 0 else 0
accuracy_top5 = total_correct_top5 / total_samples if total_samples > 0 else 0
print("\nEvaluation Results:")
print("-" * 40)
print(f"Top-1 Accuracy: {accuracy:.4f} ({total_correct}/{total_samples})")
print(f"Top-5 Accuracy: {accuracy_top5:.4f} ({total_correct_top5}/{total_samples})")
def visualize_embeddings(checkpoint_path: str, dataset_root: str, dataset_face_root: str, dataset_eyes_root: str, output_path: str = 'tsne.png', max_artists: int = 50, device: str = 'cuda'):
if not PLOT_AVAILABLE:
print("matplotlib not available")
return
inference = ArtistEmbeddingInference(checkpoint_path, device)
config = get_config()
artist_to_idx, full_splits, face_splits, eye_splits = build_dataset_splits(
dataset_root, dataset_face_root, dataset_eyes_root,
min_images=config.data.min_images_per_artist
)
selected = list(artist_to_idx.keys())[:max_artists]
filtered_full = {a: p[:10] for a, p in full_splits['test'].items() if a in selected}
filtered_face = {a: face_splits['test'].get(a, []) for a in selected}
filtered_eye = {a: eye_splits['test'].get(a, []) for a in selected}
filtered_idx = {a: i for i, a in enumerate(selected)}
dataset = ArtistDataset(
dataset_root, dataset_face_root, dataset_eyes_root,
filtered_idx, filtered_full, filtered_face, filtered_eye,
is_training=False
)
loader = DataLoader(dataset, batch_size=32, shuffle=False, collate_fn=collate_fn)
all_embeddings, all_labels = [], []
for batch in tqdm(loader, desc="Extracting"):
full = batch['full'].to(inference.device)
face = batch['face'].to(inference.device)
eye = batch['eye'].to(inference.device)
has_face = batch['has_face'].to(inference.device)
has_eye = batch['has_eye'].to(inference.device)
with torch.no_grad():
embeddings = inference.model.get_embeddings(full, face, eye, has_face, has_eye)
all_embeddings.append(embeddings.cpu())
all_labels.extend(batch['label'].tolist())
embeddings = torch.cat(all_embeddings, dim=0).numpy()
print("Running t-SNE...")
tsne = TSNE(n_components=2, random_state=42, perplexity=30)
embeddings_2d = tsne.fit_transform(embeddings)
plt.figure(figsize=(14, 10))
colors = plt.cm.tab20(np.linspace(0, 1, max_artists))
for label in set(all_labels):
mask = np.array(all_labels) == label
plt.scatter(embeddings_2d[mask, 0], embeddings_2d[mask, 1], c=[colors[label]], alpha=0.7, s=50)
plt.title('Artist Style Embeddings (t-SNE)')
plt.tight_layout()
plt.savefig(output_path, dpi=150)
plt.close()
print(f"Saved to {output_path}")
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, required=True)
parser.add_argument('--dataset_root', type=str, default='./dataset')
parser.add_argument('--dataset_face_root', type=str, default='./dataset_face')
parser.add_argument('--dataset_eyes_root', type=str, default='./dataset_eyes')
parser.add_argument('--mode', type=str, default='evaluate', choices=['evaluate', 'visualize', 'predict'])
parser.add_argument('--image', type=str, default=None)
parser.add_argument('--output', type=str, default='tsne.png')
parser.add_argument('--device', type=str, default='cuda')
args = parser.parse_args()
if args.mode == 'evaluate':
evaluate_model(args.checkpoint, args.dataset_root, args.dataset_face_root, args.dataset_eyes_root, args.device)
elif args.mode == 'visualize':
visualize_embeddings(args.checkpoint, args.dataset_root, args.dataset_face_root, args.dataset_eyes_root, args.output, device=args.device)
elif args.mode == 'predict':
if not args.image:
print("--image required for predict mode")
return
inference = ArtistEmbeddingInference(args.checkpoint, args.device)
image = Image.open(args.image).convert('RGB')
predictions = inference.predict_artist(image, top_k=10)
print("\nTop 10 Predictions:")
for i, (artist, prob) in enumerate(predictions, 1):
print(f"{i}. {artist}: {prob:.4f}")
if __name__ == '__main__':
main()
|