Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,959 Bytes
546ff88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
"""
Artist Style Embedding - Model Architecture
EVA02-Large based Multi-branch Style Encoder
"""
from typing import Dict, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import timm
class EVA02Encoder(nn.Module):
"""
EVA02-Large backbone encoder
Pre-trained on CLIP, excellent for style features
"""
def __init__(
self,
pretrained: bool = True,
output_dim: int = 1024,
):
super().__init__()
self.backbone = timm.create_model(
"eva02_large_patch14_clip_224",
pretrained=pretrained,
num_classes=0,
)
# EVA02-Large output: 1024
self.feature_dim = 1024
if self.feature_dim != output_dim:
self.proj = nn.Sequential(
nn.Linear(self.feature_dim, output_dim),
nn.LayerNorm(output_dim),
nn.GELU(),
)
else:
self.proj = nn.Identity()
self.output_dim = output_dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
features = self.backbone(x)
return self.proj(features)
class GatedFusion(nn.Module):
"""Gated attention fusion for multi-branch features"""
def __init__(self, input_dim: int, num_branches: int = 3):
super().__init__()
self.num_branches = num_branches
self.gate = nn.Sequential(
nn.Linear(input_dim * num_branches, input_dim),
nn.ReLU(),
nn.Linear(input_dim, num_branches),
nn.Softmax(dim=-1),
)
def forward(
self,
features: torch.Tensor, # [B, num_branches, dim]
mask: Optional[torch.Tensor] = None, # [B, num_branches]
) -> torch.Tensor:
B, N, D = features.shape
concat_features = features.view(B, -1)
gates = self.gate(concat_features)
if mask is not None:
gates = gates * mask.float()
gates = gates / (gates.sum(dim=-1, keepdim=True) + 1e-8)
gates = gates.unsqueeze(-1)
fused = (features * gates).sum(dim=1)
return fused
class StyleEmbeddingHead(nn.Module):
"""Final embedding projection head"""
def __init__(
self,
input_dim: int,
embedding_dim: int = 512,
hidden_dim: int = 1024,
dropout: float = 0.1,
):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, embedding_dim),
)
self.final_norm = nn.LayerNorm(embedding_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.mlp(x)
x = self.final_norm(x)
x = F.normalize(x, p=2, dim=-1)
return x
class MultiBranchStyleEncoder(nn.Module):
"""
Multi-branch style encoder with separate EVA02-Large backbones
- Full image branch
- Face crop branch
- Eye crop branch
"""
def __init__(
self,
embedding_dim: int = 512,
hidden_dim: int = 1024,
dropout: float = 0.1,
):
super().__init__()
self.shared_backbone = EVA02Encoder(pretrained=True, output_dim=hidden_dim)
# Gated Fusion
self.fusion = GatedFusion(hidden_dim, num_branches=3)
# Embedding head
self.embedding_head = StyleEmbeddingHead(
hidden_dim, embedding_dim, hidden_dim, dropout
)
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
def forward(
self,
full: torch.Tensor,
face: torch.Tensor,
eye: torch.Tensor,
has_face: torch.Tensor,
has_eye: torch.Tensor,
) -> torch.Tensor:
B = full.shape[0]
device = full.device
# Encode all branches
full_features = self.shared_backbone(full)
face_features = self.shared_backbone(face) * has_face.unsqueeze(-1)
eye_features = self.shared_backbone(eye) * has_eye.unsqueeze(-1)
# Stack and create mask
stacked = torch.stack([full_features, face_features, eye_features], dim=1)
mask = torch.stack([
torch.ones(B, device=device, dtype=torch.bool),
has_face,
has_eye,
], dim=1)
# Fusion
fused = self.fusion(stacked, mask)
# Embedding
embeddings = self.embedding_head(fused)
return embeddings
def get_backbone_params(self):
"""Returns parameters of the single shared backbone"""
# Assuming you named your shared backbone 'self.shared_encoder'
return self.shared_backbone.parameters()
def get_head_params(self):
"""Returns parameters of all heads and fusion layers"""
params = []
# Add the fusion layer
params.extend(self.fusion.parameters())
# Add the final embedding MLP
params.extend(self.embedding_head.parameters())
# Note: If your shared_encoder has a projection head (proj),
# that is usually trained with the backbone, so we don't add it here.
return params
def freeze_backbone(self):
"""Freezes the single shared backbone"""
for param in self.get_backbone_params():
param.requires_grad = False
self.shared_backbone.eval() # Optional: keep BN stats frozen
def unfreeze_backbone(self):
"""Unfreezes the single shared backbone"""
for param in self.get_backbone_params():
param.requires_grad = True
self.shared_backbone.train()
class ArtistStyleModel(nn.Module):
"""
Complete model: Multi-branch Encoder + ArcFace Head
"""
def __init__(
self,
num_classes: int,
embedding_dim: int = 512,
hidden_dim: int = 1024,
dropout: float = 0.1,
):
super().__init__()
self.num_classes = num_classes
self.embedding_dim = embedding_dim
# Style encoder
self.encoder = MultiBranchStyleEncoder(
embedding_dim=embedding_dim,
hidden_dim=hidden_dim,
dropout=dropout,
)
# ArcFace weight
self.arcface_weight = nn.Parameter(
torch.FloatTensor(num_classes, embedding_dim)
)
nn.init.xavier_uniform_(self.arcface_weight)
def forward(
self,
full: torch.Tensor,
face: torch.Tensor,
eye: torch.Tensor,
has_face: torch.Tensor,
has_eye: torch.Tensor,
) -> Dict[str, torch.Tensor]:
embeddings = self.encoder(full, face, eye, has_face, has_eye)
# Cosine similarity with normalized weights
normalized_weights = F.normalize(self.arcface_weight, p=2, dim=1)
cosine = F.linear(embeddings, normalized_weights)
return {
'embeddings': embeddings,
'cosine': cosine,
}
def get_embeddings(
self,
full: torch.Tensor,
face: torch.Tensor,
eye: torch.Tensor,
has_face: torch.Tensor,
has_eye: torch.Tensor,
) -> torch.Tensor:
return self.encoder(full, face, eye, has_face, has_eye)
def create_model(config, num_classes: int) -> ArtistStyleModel:
"""Create model from config"""
return ArtistStyleModel(
num_classes=num_classes,
embedding_dim=config.model.embedding_dim,
hidden_dim=config.model.hidden_dim,
dropout=config.model.dropout,
)
|