Spaces:
Runtime error
Runtime error
Commit
·
78fbf94
1
Parent(s):
f6b1cab
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,28 @@
|
|
| 1 |
from speechbrain.pretrained.interfaces import foreign_class
|
| 2 |
-
import gradio as gr
|
| 3 |
|
| 4 |
import warnings
|
| 5 |
warnings.filterwarnings("ignore")
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
# Loading the speechbrain emotion detection model
|
| 8 |
learner = foreign_class(
|
| 9 |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
| 10 |
-
pymodule_file="custom_interface.py",
|
| 11 |
classname="CustomEncoderWav2vec2Classifier"
|
| 12 |
)
|
| 13 |
|
| 14 |
# Building prediction function for gradio
|
| 15 |
emotion_dict = {
|
| 16 |
-
'sad': 'Sad',
|
| 17 |
'hap': 'Happy',
|
| 18 |
'ang': 'Anger',
|
| 19 |
'fea': 'Fear',
|
|
@@ -21,13 +30,33 @@ emotion_dict = {
|
|
| 21 |
'neu': 'Neutral'
|
| 22 |
}
|
| 23 |
|
| 24 |
-
def predict_emotion(
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
# Loading gradio interface
|
| 29 |
-
inputs = gr.inputs.Audio(label="Input Audio", type="file")
|
| 30 |
-
outputs = "text"
|
| 31 |
title = "ML Speech Emotion Detection"
|
| 32 |
-
description = "
|
| 33 |
-
|
|
|
|
|
|
| 1 |
from speechbrain.pretrained.interfaces import foreign_class
|
|
|
|
| 2 |
|
| 3 |
import warnings
|
| 4 |
warnings.filterwarnings("ignore")
|
| 5 |
|
| 6 |
+
import os
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
# Путь к каталогу с предзаписанными аудиофайлами
|
| 10 |
+
prerecorded_audio_path = 'prerecorded'
|
| 11 |
+
# Список файлов в каталоге prerecorded
|
| 12 |
+
prerecorded_audio_files = os.listdir(prerecorded_audio_path)
|
| 13 |
+
# Полные пути к файлам для Dropdown
|
| 14 |
+
prerecorded_audio_files_full_path = [os.path.join(prerecorded_audio_path, file) for file in prerecorded_audio_files]
|
| 15 |
+
|
| 16 |
# Loading the speechbrain emotion detection model
|
| 17 |
learner = foreign_class(
|
| 18 |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
| 19 |
+
pymodule_file="custom_interface.py",
|
| 20 |
classname="CustomEncoderWav2vec2Classifier"
|
| 21 |
)
|
| 22 |
|
| 23 |
# Building prediction function for gradio
|
| 24 |
emotion_dict = {
|
| 25 |
+
'sad': 'Sad',
|
| 26 |
'hap': 'Happy',
|
| 27 |
'ang': 'Anger',
|
| 28 |
'fea': 'Fear',
|
|
|
|
| 30 |
'neu': 'Neutral'
|
| 31 |
}
|
| 32 |
|
| 33 |
+
def predict_emotion(uploaded_audio=None, prerecorded_audio=None):
|
| 34 |
+
# Если выбран аудиофайл из выпадающего списка, использовать его
|
| 35 |
+
if prerecorded_audio is not None:
|
| 36 |
+
audio_file_path = prerecorded_audio
|
| 37 |
+
elif uploaded_audio is not None:
|
| 38 |
+
# Иначе, если загружен файл, использовать его
|
| 39 |
+
audio_file_path = uploaded_audio.name
|
| 40 |
+
else:
|
| 41 |
+
# Если нет файла, вернуть сообщение об ошибке
|
| 42 |
+
return "No audio file provided", 0
|
| 43 |
+
|
| 44 |
+
out_prob, score, index, text_lab = learner.classify_file(audio_file_path)
|
| 45 |
+
emotion_probability = out_prob[0][index[0]].item()
|
| 46 |
+
|
| 47 |
+
# Возвращаем словарь с эмоцией и вероятностью
|
| 48 |
+
return {"Emotion": emotion_dict[text_lab[0]], "Probability": f"{emotion_probability:.2f}"}
|
| 49 |
+
|
| 50 |
+
# Модифицированный Gradio interface
|
| 51 |
+
inputs = [
|
| 52 |
+
gr.inputs.Dropdown(list(prerecorded_audio_files_full_path), label="Select Prerecorded Audio", default=None),
|
| 53 |
+
gr.inputs.Audio(label="Or Upload Audio", type="file", source="upload", optional=True),
|
| 54 |
+
gr.inputs.Audio(label="Or Record Audio", type="file", source="microphone", optional=True)
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
outputs = gr.outputs.Label(num_top_classes=2)
|
| 58 |
|
|
|
|
|
|
|
|
|
|
| 59 |
title = "ML Speech Emotion Detection"
|
| 60 |
+
description = "Detect emotions from speech using a Speechbrain powered model."
|
| 61 |
+
|
| 62 |
+
gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs, title=title, description=description).launch()
|