File size: 6,222 Bytes
6cd0323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85f96c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import random
import numpy as np
import gradio as gr
from sentence_transformers import SentenceTransformer, util
from openai import OpenAI



# -----------------------------
# 1. ЗАГРУЗКА СПИСКА СЛОВ И ВЫЧИСЛЕНИЕ ЭМБЕДДИНГОВ
# -----------------------------
WORDS_FILE = "words.txt"
with open(WORDS_FILE, encoding="utf-8") as f:
    words = [line.strip() for line in f if line.strip()]

# Use sentence-transformers/all-MiniLM-L6-v2 for local embeddings
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
embeddings = embedding_model.encode(words, convert_to_tensor=True)

# Pick a random target word
target_word = random.choice(words)
print(target_word)
idx_target = words.index(target_word)
target_emb = embeddings[idx_target : idx_target + 1]

# Compute cosine similarities between target and all words
cosine_sim = util.cos_sim(target_emb, embeddings)[0]
sim_values = cosine_sim.cpu().numpy()

# Build a lookup dict: word -> similarity
similarity_dict = {w: float(sim_values[i]) for i, w in enumerate(words)}

# Sort words by similarity descending and build rank lookup
sorted_indices = np.argsort(-sim_values)  # indices sorted by decreasing similarity
N = len(words)
rank_dict = {}
for rank_zero_based, idx in enumerate(sorted_indices):
    word = words[idx]
    rank_dict[word] = rank_zero_based + 1  # 1-based rank

# -----------------------------
# 2. INIT NEBIUS CLIENT FOR Qwen/Qwen3-14B
# -----------------------------
# Ensure NEBIUS_API_KEY is set in the environment
client = OpenAI(
    base_url="https://api.studio.nebius.com/v1/",
    api_key=os.environ.get("NEBIUS_API_KEY"),
)

# -----------------------------
# 3. CALLBACK: PROCESS GUESS
# -----------------------------
def guess_callback(guess: str, history: list, rank_history: list):
    guess = guess.strip().lower()
    if guess not in rank_dict:
        # Re-render history even if guess invalid
        history_html = ""
        if history:
            lines = []
            for i, (w, r) in enumerate(zip(history, rank_history)):
                p = (r - 1) / (N - 1)
                red = int(255 * p)
                green = int(255 * (1 - p))
                color_hex = f"#{red:02x}{green:02x}00"
                lines.append(
                    f"<span style='font-weight:bold; color:{color_hex};'>"
                    f"{i+1}. {w}{r}</span>"
                )
            history_html = "<br>".join(lines)
        return (
            f"Word “{guess}” not found in dictionary.",
            history,
            rank_history,
            history_html
        )

    r = rank_dict[guess]
    history = history + [guess]
    rank_history = rank_history + [r]

    msg = f"Index in sorted list for “{guess}”: {r} of {N}"
    if guess == target_word:
        msg += "\n\n🎉 Congratulations! You guessed the word!"

    # Build colored HTML history
    lines = []
    for i, (w, rank_val) in enumerate(zip(history, rank_history)):
        p = (rank_val - 1) / (N - 1)
        red = int(255 * p)
        green = int(255 * (1 - p))
        color_hex = f"#{red:02x}{green:02x}00"
        lines.append(
            f"<span style='font-weight:bold; color:{color_hex};'>"
            f"{i+1}. {w}{rank_val}</span>"
        )
    history_html = "<br>".join(lines)

    return msg, history, rank_history, history_html

# -----------------------------
# 4. CALLBACK: ASK LLM FOR HELP
# -----------------------------
def help_callback(history: list, rank_history: list):
    if not history:
        return "Make at least one guess before asking for hints."

    attempts_info = "\n".join(
        [f"{i+1}. Word: “{w}”, Index: {rank_history[i]} of {N}"
         for i, w in enumerate(history)]
    )
    prompt = (
        "The user has the following guess history (word and its index in the sorted list):\n\n"
        f"{attempts_info}\n\n"
        "Without revealing the secret word, suggest new guesses or hints "
        "that might guide the user toward the correct answer."
    )

    completion = client.chat.completions.create(
        model="Qwen/Qwen3-14B",
        messages=[{"role": "user", "content": prompt}],
        temperature=0.6
    )
    print(prompt)
    print('-'*80)
    print(completion.choices[0].message.content)
    return completion.choices[0].message.content

# -----------------------------
# 5. BUILD GRADIO INTERFACE
# -----------------------------
with gr.Blocks() as demo:
    gr.Markdown("""
    <h1 style="text-align:center; font-family:Helvetica;">🎯 Guess The Word 🌟</h1>
    <p style="font-size:16px; text-align:center;">
      A random word has been chosen. Enter your guess and see its <em>index</em> 
      in the sorted list of similarities.  
      Colors transition from green (best rank) to red (worst rank).  
      If stuck, ask the LLM for hints!
    </p>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            text_input = gr.Textbox(
                label="Enter your guess",
                placeholder="e.g. fire",
                interactive=True
            )
            button_guess = gr.Button("Submit Guess", variant="primary")
            output_guess = gr.Textbox(
                label="Result",
                interactive=False
            )

            button_help = gr.Button("Ask LLM for Hints", variant="secondary")
            output_help = gr.Textbox(
                label="Hints from LLM",
                interactive=False
            )
        with gr.Column(scale=1):
            gr.Markdown("<h2 style='font-family:Helvetica;'>Guess History</h2>")
            history_display = gr.HTML()

    state_history = gr.State(value=[])
    state_rank_history = gr.State(value=[])

    # On guess, return (message, new history list, new rank list, colored HTML history)
    button_guess.click(
        fn=guess_callback,
        inputs=[text_input, state_history, state_rank_history],
        outputs=[output_guess, state_history, state_rank_history, history_display]
    )

    button_help.click(
        fn=help_callback,
        inputs=[state_history, state_rank_history],
        outputs=[output_help]
    )

if __name__ == "__main__":
    demo.launch()