VCPEAssistant / app.py
invincible-jha's picture
Update app.py
613e69e verified
import os
import gc
import json
import logging
import tempfile
from datetime import datetime, timedelta
from pathlib import Path
from dataclasses import dataclass
import gradio as gr
import whisper
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import numpy as np
import soundfile as sf
import humanize
import joblib
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Constants
MAX_FILE_SIZE = 25 * 1024 * 1024 # 25MB
MAX_AUDIO_DURATION = 600 # 10 minutes
MIN_SAMPLE_RATE = 16000 # 16kHz
SUPPORTED_FORMATS = {'.wav', '.mp3', '.m4a'}
# Model configuration
MODEL_CONFIG = {
"path": "gpt2",
"description": "Efficient open-source model for analysis",
"memory_required": "8GB"
}
@dataclass
class VCStyle:
name: str
note_format: dict
key_interests: list
custom_sections: list
insight_preferences: dict
class AudioValidator:
@staticmethod
def validate_audio_file(file):
stats = {
'file_size': None,
'duration': None,
'sample_rate': None,
'format': None
}
try:
if file is None:
logger.debug("No file was uploaded.")
return False, "No file was uploaded.", stats
# Check file size
file_size = len(file.read())
file.seek(0) # Reset file pointer
stats['file_size'] = humanize.naturalsize(file_size)
logger.info(f"File size: {stats['file_size']}")
if file_size > MAX_FILE_SIZE:
logger.warning(f"File size exceeds limit: {stats['file_size']}")
return False, f"File size ({stats['file_size']}) exceeds limit", stats
# Check file extension
file_extension = Path(file.name).suffix.lower()
stats['format'] = file_extension
logger.info(f"File format: {file_extension}")
if file_extension not in SUPPORTED_FORMATS:
logger.warning(f"Unsupported format: {file_extension}")
return False, f"Unsupported format {file_extension}", stats
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as tmp_file:
tmp_file.write(file.read())
tmp_file_path = tmp_file.name
logger.debug(f"Temporary file created at {tmp_file_path}")
try:
# Check audio properties
y, sr = sf.read(tmp_file_path)
duration = len(y) / sr
stats.update({
'duration': str(timedelta(seconds=int(duration))),
'sample_rate': f"{sr/1000:.1f}kHz"
})
logger.info(f"Audio duration: {stats['duration']}, Sample rate: {stats['sample_rate']}")
if duration > MAX_AUDIO_DURATION:
logger.warning(f"Duration exceeds limit: {stats['duration']}")
return False, f"Duration ({stats['duration']}) exceeds limit", stats
if sr < MIN_SAMPLE_RATE:
logger.warning(f"Sample rate too low: {stats['sample_rate']}")
return False, f"Sample rate too low ({stats['sample_rate']})", stats
return True, "Audio file is valid", stats
finally:
os.unlink(tmp_file_path)
logger.debug(f"Temporary file {tmp_file_path} deleted")
except Exception as e:
logger.exception("Validation error:")
return False, str(e), stats
class AudioProcessor:
def __init__(self, model):
self.model = model
self.validator = AudioValidator()
def process_audio(self, audio_file):
stats = {
'status': 'processing',
'start_time': datetime.now(),
'file_info': None,
'processing_time': None,
'error': None
}
try:
# Validate file
logger.debug("Starting audio file validation.")
is_valid, message, file_stats = self.validator.validate_audio_file(audio_file)
stats['file_info'] = file_stats
if not is_valid:
stats['status'] = 'failed'
stats['error'] = message
logger.error(f"Audio validation failed: {message}")
return None, stats
# Process audio
with tempfile.NamedTemporaryFile(delete=False, suffix=file_stats['format']) as tmp_file:
tmp_file.write(audio_file.read())
tmp_file_path = tmp_file.name
logger.debug(f"Temporary file for processing created at {tmp_file_path}")
try:
logger.info("Starting transcription with Whisper model.")
result = self.model.transcribe(
tmp_file_path,
language="en",
task="transcribe",
fp16=torch.cuda.is_available()
)
stats['status'] = 'success'
stats['processing_time'] = str(datetime.now() - stats['start_time'])
logger.info(f"Transcription successful. Processing time: {stats['processing_time']}")
return result["text"], stats
finally:
os.unlink(tmp_file_path)
logger.debug(f"Temporary file {tmp_file_path} deleted after processing")
except Exception as e:
logger.exception("Processing error:")
stats['status'] = 'failed'
stats['error'] = str(e)
return None, stats
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("Cleared CUDA cache")
gc.collect()
logger.debug("Garbage collection complete")
def load_whisper():
try:
logger.info("Loading Whisper model.")
cached_model = joblib.load("whisper_model_cache.pkl") if os.path.exists("whisper_model_cache.pkl") else None
if cached_model:
logger.info("Loaded Whisper model from cache.")
return cached_model
model = whisper.load_model("base")
joblib.dump(model, "whisper_model_cache.pkl")
logger.info("Whisper model loaded and cached.")
return model
except Exception as e:
logger.error(f"Whisper model loading error: {str(e)}")
return None
def load_llm():
try:
logger.info("Loading LLM model.")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_CONFIG["path"],
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_CONFIG["path"],
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
logger.info("Initializing text generation pipeline.")
return pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15,
batch_size=1
)
except Exception as e:
logger.error(f"LLM loading error: {str(e)}")
return None
class ContentAnalyzer:
def __init__(self, generator):
self.generator = generator
def analyze_text(self, text, vc_style):
try:
logger.info("Creating analysis prompt.")
prompt = self._create_analysis_prompt(text, vc_style)
logger.debug(f"Prompt created: {prompt}")
response = self._generate_response(prompt)
logger.info("Analysis response generated.")
return self._parse_response(response)
except Exception as e:
logger.exception("Analysis error:")
return None
def _create_analysis_prompt(self, text, vc_style):
interests = ', '.join(vc_style.key_interests)
return f"""Analyze this startup pitch focusing on {interests}:
{text}
Provide structured insights for:
1. Key Points
2. Metrics
3. Risks
4. Questions"""
def _generate_response(self, prompt):
try:
logger.info("Generating response using LLM.")
response = self.generator(prompt)
logger.debug(f"Generated response: {response}")
return response[0]['generated_text']
except Exception as e:
logger.exception("Generation error:")
return ""
def _parse_response(self, response):
try:
logger.info("Parsing generated response.")
sections = response.split('\n\n')
parsed = {}
current_section = "general"
for section in sections:
if section.strip().endswith(':'):
current_section = section.strip()[:-1].lower()
parsed[current_section] = []
else:
if current_section in parsed:
parsed[current_section].append(section.strip())
else:
parsed[current_section] = [section.strip()]
logger.debug(f"Parsed response: {parsed}")
return parsed
except Exception as e:
logger.exception("Parsing error:")
return {"error": "Failed to parse response"}
def process_audio_file(audio_file, vc_name, note_style, interests):
logger.info("Processing audio file.")
whisper_model = load_whisper()
llm = load_llm()
if not whisper_model or not llm:
logger.error("Failed to load models.")
return "Failed to load models. Please try again.", None
audio_processor = AudioProcessor(whisper_model)
analyzer = ContentAnalyzer(llm)
transcription, stats = audio_processor.process_audio(audio_file)
if transcription and stats['status'] == 'success':
logger.info("Transcription successful, starting analysis.")
vc_style = VCStyle(
name=vc_name,
note_format={"style": note_style},
key_interests=interests,
custom_sections=[],
insight_preferences={}
)
analysis = analyzer.analyze_text(transcription, vc_style)
return transcription, analysis, stats
else:
logger.error(f"Audio processing failed: {stats['error']}")
return None, None, stats
# Gradio Interface
def main_interface(audio_file, vc_name, note_style, interests):
logger.info("Starting main interface process.")
transcription, analysis, stats = process_audio_file(audio_file, vc_name, note_style, interests)
if transcription:
logger.info("Interface processing completed successfully.")
return transcription, json.dumps(analysis, indent=2), stats
else:
logger.error("Interface processing failed.")
return "", "", stats
iface = gr.Interface(
fn=main_interface,
inputs=[
gr.Audio(type="file", label="Upload Audio File (WAV, MP3, M4A)"),
gr.Textbox(label="Your Name"),
gr.Dropdown(choices=["Bullet Points", "Paragraphs", "Q&A"], label="Note Style"),
gr.CheckboxGroup(choices=["Product", "Market", "Team", "Financials", "Technology"], label="Focus Areas")
],
outputs=[
gr.Textbox(label="Transcript"),
gr.Textbox(label="Analysis"),
gr.JSON(label="Processing Stats")
],
title="VC Call Assistant",
description="Upload an audio file, and get a transcript along with analysis tailored to your focus areas.",
theme="huggingface"
)
if __name__ == "__main__":
logger.info("Launching Gradio interface.")
iface.launch()
# requirements.txt
# gradio
# whisper
# torch
# transformers
# numpy
# soundfile
# humanize
# huggingface_hub
# SentencePiece # required by some models in transformers
# ffmpeg-python # for handling audio files (may be required by Whisper)
# typing-extensions
# joblib # for model caching