Spaces:
Runtime error
Runtime error
invincible-jha
commited on
Commit
·
d6fdb88
1
Parent(s):
d28913a
Initialize AI models and agents with CPU-optimized models
Browse files- config/config.py +5 -5
- interface/app.py +78 -3
config/config.py
CHANGED
|
@@ -6,22 +6,22 @@ def load_config() -> Dict:
|
|
| 6 |
return {
|
| 7 |
"MODEL_CONFIGS": {
|
| 8 |
"conversation": {
|
| 9 |
-
"model_id": "
|
| 10 |
"max_length": 2048,
|
| 11 |
"temperature": 0.7,
|
| 12 |
},
|
| 13 |
"emotion_detection": {
|
| 14 |
-
"model_id": "
|
| 15 |
},
|
| 16 |
"speech_to_text": {
|
| 17 |
-
"model_id": "openai/whisper-
|
| 18 |
},
|
| 19 |
"vision": {
|
| 20 |
-
"model_id": "microsoft/resnet-
|
| 21 |
}
|
| 22 |
},
|
| 23 |
"INTERFACE_CONFIG": {
|
| 24 |
-
"theme": "
|
| 25 |
"supported_languages": ["en"],
|
| 26 |
"max_file_size_mb": 10,
|
| 27 |
"supported_file_types": [
|
|
|
|
| 6 |
return {
|
| 7 |
"MODEL_CONFIGS": {
|
| 8 |
"conversation": {
|
| 9 |
+
"model_id": "facebook/opt-125m",
|
| 10 |
"max_length": 2048,
|
| 11 |
"temperature": 0.7,
|
| 12 |
},
|
| 13 |
"emotion_detection": {
|
| 14 |
+
"model_id": "j-hartmann/emotion-english-distilroberta-base",
|
| 15 |
},
|
| 16 |
"speech_to_text": {
|
| 17 |
+
"model_id": "openai/whisper-tiny",
|
| 18 |
},
|
| 19 |
"vision": {
|
| 20 |
+
"model_id": "microsoft/resnet-18",
|
| 21 |
}
|
| 22 |
},
|
| 23 |
"INTERFACE_CONFIG": {
|
| 24 |
+
"theme": "soft",
|
| 25 |
"supported_languages": ["en"],
|
| 26 |
"max_file_size_mb": 10,
|
| 27 |
"supported_file_types": [
|
interface/app.py
CHANGED
|
@@ -2,8 +2,13 @@ import os
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import logging
|
|
|
|
| 5 |
from utils.log_manager import LogManager
|
| 6 |
from utils.analytics_logger import AnalyticsLogger
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Force CPU-only mode
|
| 9 |
torch.cuda.is_available = lambda: False
|
|
@@ -21,9 +26,65 @@ class WellnessInterface:
|
|
| 21 |
self.device = "cpu"
|
| 22 |
self.logger.info("Using CPU-only mode")
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Initialize interface
|
| 25 |
self.setup_interface()
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
def setup_interface(self):
|
| 28 |
"""Setup the Gradio interface components"""
|
| 29 |
self.logger.info("Setting up interface components")
|
|
@@ -171,13 +232,27 @@ class WellnessInterface:
|
|
| 171 |
}}
|
| 172 |
)
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
# Add to chat history using message format
|
| 178 |
history = history or []
|
| 179 |
history.append({"role": "user", "content": text if text else "Sent media"})
|
| 180 |
-
history.append({"role": "assistant", "content": response})
|
| 181 |
|
| 182 |
return history, "" # Return empty string to clear text input
|
| 183 |
|
|
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import logging
|
| 5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 6 |
from utils.log_manager import LogManager
|
| 7 |
from utils.analytics_logger import AnalyticsLogger
|
| 8 |
+
from agents.conversation_agent import ConversationAgent
|
| 9 |
+
from agents.assessment_agent import AssessmentAgent
|
| 10 |
+
from agents.mindfulness_agent import MindfulnessAgent
|
| 11 |
+
from agents.crisis_agent import CrisisAgent
|
| 12 |
|
| 13 |
# Force CPU-only mode
|
| 14 |
torch.cuda.is_available = lambda: False
|
|
|
|
| 26 |
self.device = "cpu"
|
| 27 |
self.logger.info("Using CPU-only mode")
|
| 28 |
|
| 29 |
+
# Initialize models
|
| 30 |
+
self.initialize_models()
|
| 31 |
+
|
| 32 |
+
# Initialize agents
|
| 33 |
+
self.initialize_agents()
|
| 34 |
+
|
| 35 |
# Initialize interface
|
| 36 |
self.setup_interface()
|
| 37 |
|
| 38 |
+
def initialize_models(self):
|
| 39 |
+
"""Initialize AI models"""
|
| 40 |
+
self.logger.info("Initializing AI models")
|
| 41 |
+
try:
|
| 42 |
+
# Initialize emotion detection model
|
| 43 |
+
self.emotion_model = pipeline(
|
| 44 |
+
"text-classification",
|
| 45 |
+
model=self.config["MODEL_CONFIGS"]["emotion_detection"]["model_id"],
|
| 46 |
+
device=self.device
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Initialize conversation model
|
| 50 |
+
self.conversation_tokenizer = AutoTokenizer.from_pretrained(
|
| 51 |
+
self.config["MODEL_CONFIGS"]["conversation"]["model_id"]
|
| 52 |
+
)
|
| 53 |
+
self.conversation_model = AutoModelForCausalLM.from_pretrained(
|
| 54 |
+
self.config["MODEL_CONFIGS"]["conversation"]["model_id"],
|
| 55 |
+
device_map={"": self.device}
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
self.logger.info("AI models initialized successfully")
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
self.logger.error(f"Error initializing models: {str(e)}")
|
| 62 |
+
raise
|
| 63 |
+
|
| 64 |
+
def initialize_agents(self):
|
| 65 |
+
"""Initialize AI agents"""
|
| 66 |
+
self.logger.info("Initializing AI agents")
|
| 67 |
+
try:
|
| 68 |
+
# Initialize all agents
|
| 69 |
+
self.conversation_agent = ConversationAgent(
|
| 70 |
+
model_config=self.config["MODEL_CONFIGS"]
|
| 71 |
+
)
|
| 72 |
+
self.assessment_agent = AssessmentAgent(
|
| 73 |
+
model_config=self.config["MODEL_CONFIGS"]
|
| 74 |
+
)
|
| 75 |
+
self.mindfulness_agent = MindfulnessAgent(
|
| 76 |
+
model_config=self.config["MODEL_CONFIGS"]
|
| 77 |
+
)
|
| 78 |
+
self.crisis_agent = CrisisAgent(
|
| 79 |
+
model_config=self.config["MODEL_CONFIGS"]
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
self.logger.info("AI agents initialized successfully")
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
self.logger.error(f"Error initializing agents: {str(e)}")
|
| 86 |
+
raise
|
| 87 |
+
|
| 88 |
def setup_interface(self):
|
| 89 |
"""Setup the Gradio interface components"""
|
| 90 |
self.logger.info("Setting up interface components")
|
|
|
|
| 232 |
}}
|
| 233 |
)
|
| 234 |
|
| 235 |
+
# Analyze emotion if text is present
|
| 236 |
+
emotion = None
|
| 237 |
+
if text:
|
| 238 |
+
emotion_result = self.emotion_model(text)
|
| 239 |
+
emotion = emotion_result[0] if emotion_result else None
|
| 240 |
+
self.logger.info(f"Detected emotion: {emotion}")
|
| 241 |
+
|
| 242 |
+
# Route to appropriate agent based on content and emotion
|
| 243 |
+
if emotion and emotion.get("label") in ["anxiety", "fear", "panic"]:
|
| 244 |
+
response = self.crisis_agent.process_message(text)
|
| 245 |
+
elif "meditate" in text.lower() or "mindfulness" in text.lower():
|
| 246 |
+
response = self.mindfulness_agent.process_message(text)
|
| 247 |
+
elif "assess" in text.lower() or "check" in text.lower():
|
| 248 |
+
response = self.assessment_agent.process_message(text)
|
| 249 |
+
else:
|
| 250 |
+
response = self.conversation_agent.process_message(text)
|
| 251 |
|
| 252 |
# Add to chat history using message format
|
| 253 |
history = history or []
|
| 254 |
history.append({"role": "user", "content": text if text else "Sent media"})
|
| 255 |
+
history.append({"role": "assistant", "content": response["message"]})
|
| 256 |
|
| 257 |
return history, "" # Return empty string to clear text input
|
| 258 |
|