File size: 10,302 Bytes
df6d484
98cae5e
8e507c9
 
 
 
 
 
98cae5e
 
756731e
97a4601
 
 
 
 
 
 
ff8850f
97a4601
 
 
 
 
ff8850f
 
0c6421d
 
 
d9a70da
 
 
 
 
 
 
 
 
 
 
 
0c6421d
d9a70da
 
 
 
 
 
 
 
 
 
 
 
0c6421d
d9a70da
 
 
07099dd
 
d9a70da
0c6421d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a70da
 
 
0e18b8b
 
d9a70da
0e18b8b
 
d9a70da
0e18b8b
 
 
 
 
 
 
 
 
 
d9a70da
0e18b8b
 
d9a70da
0e18b8b
 
 
d9a70da
 
0e18b8b
d9a70da
34a3311
d9a70da
 
34a3311
 
d9a70da
 
 
 
 
 
 
 
 
 
07099dd
 
 
d9a70da
 
0c6421d
 
 
 
 
 
 
d9a70da
 
 
 
0c6421d
d9a70da
 
 
0c6421d
d9a70da
 
 
 
 
 
 
 
 
0c6421d
d9a70da
 
 
 
 
0c6421d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a192521
0c6421d
 
 
 
 
 
 
 
 
 
 
 
d9a70da
0c6421d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3e33b
0c6421d
 
 
 
 
 
 
 
d9a70da
 
 
9a3e33b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
from dotenv import load_dotenv
import streamlit as st
import pandas as pd
import plotly.express as px
import cloudscraper
import warnings
import logging
# Charger les variables d'environnement (si vous utilisez un .env localement)
load_dotenv()
API_KEY = os.environ.get("API_KEY")
headers = {
    "Authorization": f"Bearer {API_KEY}",
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) " 
                  "AppleWebKit/537.36 (KHTML, like Gecko) " 
                  "Chrome/115.0.0.0 Safari/537.36"
}

url = "https://archeanvision.com/api/signals/available"

# Create a cloudscraper instance
scraper = cloudscraper.create_scraper()  # This will handle Cloudflare challenges
response = scraper.get(url, headers=headers)

print(response.status_code)
print(response.text)

# Load environment variables from .env
load_dotenv()

# Suppress deprecation warnings about experimental query params functions
warnings.filterwarnings(
    "ignore", 
    message="Please replace `st.experimental_get_query_params` with `st.query_params`"
)
warnings.filterwarnings(
    "ignore", 
    message="Please replace `st.experimental_set_query_params` with `st.query_params`"
)
warnings.filterwarnings("ignore", category=DeprecationWarning)

# Adjust Streamlit loggers to show only errors
logging.getLogger("streamlit.deprecation").setLevel(logging.ERROR)
logging.getLogger("streamlit.runtime.scriptrunner").setLevel(logging.ERROR)


# ---------------------------- #
#         AUTO-REFRESH         #
# ---------------------------- #
st.set_page_config(
    page_title="Dashboard Auto-Refresh",
    layout="wide"
)

REFRESH_INTERVAL = 260  # seconds
st.markdown(f"<meta http-equiv='refresh' content='{REFRESH_INTERVAL}'>", unsafe_allow_html=True)
# ---------------------------- #

LOGO_IMAGE_URL = "https://cdn.discordapp.com/attachments/1276553391748812800/1374489683769163827/image.png?ex=682e3cc5&is=682ceb45&hm=ca258b6323ea40faafe307c00e48a3841450ff34b05de452e3a0fb544909615f&"
st.sidebar.image(LOGO_IMAGE_URL, use_container_width=True, caption="FrameWorx")

# Get the API key from environment variables (stored in .env or Hugging Face Secrets)
if not API_KEY:
    st.error("API_KEY is not set. Please add it to your environment (e.g. .env file or Hugging Face Secrets).")
    st.stop()

# --- Helper Functions Using cloudscraper ---

def get_active_markets_cloudscraper(api_key):
    """Retrieves the list of active markets using cloudscraper to bypass Cloudflare."""
    headers = {
        "Authorization": f"Bearer {api_key}",
        "User-Agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
                       "AppleWebKit/537.36 (KHTML, like Gecko) "
                       "Chrome/115.0.0.0 Safari/537.36")
    }
    url = "https://archeanvision.com/api/signals/available"
    scraper = cloudscraper.create_scraper()
    response = scraper.get(url, headers=headers)
    response.raise_for_status()  # Raises an exception for HTTP errors
    return response.json()  # Assuming the endpoint returns JSON

def get_market_data_cloudscraper(api_key, market):
    """Retrieves market data for the given market using cloudscraper."""
    headers = {
        "Authorization": f"Bearer {api_key}",
        "User-Agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
                       "AppleWebKit/537.36 (KHTML, like Gecko) "
                       "Chrome/115.0.0.0 Safari/537.36")
    }
    # Endpoint for market data (1,440 points ~ 24h); adjust as per API docs
    url = f"https://archeanvision.com/api/signals/{market}/data"
    scraper = cloudscraper.create_scraper()
    response = scraper.get(url, headers=headers)
    response.raise_for_status()
    return response.json()

def get_market_signals_cloudscraper(api_key, market):
    """Retrieves market signals for the given market using cloudscraper."""
    headers = {
        "Authorization": f"Bearer {api_key}",
        "User-Agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
                       "AppleWebKit/537.36 (KHTML, like Gecko) "
                       "Chrome/115.0.0.0 Safari/537.36")
    }
    url = f"https://archeanvision.com/api/signals/{market}/signals"
    scraper = cloudscraper.create_scraper()
    response = scraper.get(url, headers=headers)
    response.raise_for_status()
    return response.json()

# --- End Helper Functions ---

def get_selected_market(market_list):
    """
    Retourne le marché sélectionné à partir des paramètres d'URL ou, par défaut, le premier élément.
    Met à jour le paramètre de l'URL si l'utilisateur choisit un marché différent.
    """
    # Récupère les paramètres sous forme de dictionnaire-like
    params = st.query_params

    # Récupérer le paramètre "market" ou définir la valeur par défaut
    default_market = params.get("market", market_list[0])
    # Si "market" est une liste (clé répétée), on prend le dernier (ou le premier) élément
    if isinstance(default_market, list):
        default_market = default_market[0]

    # Trouver l'index correspondant
    default_index = market_list.index(default_market) if default_market in market_list else 0

    # Affiche un menu déroulant pour choisir le marché
    selected = st.selectbox("Select a market:", market_list, index=default_index)

    # Si l'utilisateur choisit un marché différent, on met à jour le paramètre dans l'URL
    if selected != default_market:
        st.query_params.market = selected  # Mise à jour via la notation par attribut
        # Vous pouvez également faire : st.query_params["market"] = selected

    return selected


def main():
    st.title("Active AI Crypto Markets - frameWorxVision")

    st.markdown("""
    ### What is frameWorxVision?
    **frameWorx** is an autonomous multi-market trading agent.  
    It operates simultaneously on multiple crypto assets, monitoring price movements
    in real time and delivering **data** as well as **signals** (BUY, SELL, etc.)
    to automate and optimize decision-making.
    - **AI Agent**: Continuously analyzes crypto markets.  
    - **Multi-Market**: Manages multiple assets at once.  
    - **Live Data**: Access to streaming data feeds (SSE).  
    - **Buy/Sell Signals**: Generated in real-time to seize market opportunities.  
    Below is a dashboard showcasing the active markets, their 24h data 
    (1,440 most recent data points), and their associated signals.
    ---
    **Join our Platform as a beta tester** to help improve the agent and the system.  
    - Official platform: [https://frameworx.site](https://frameworx.fun)  
    
    """)

    # Retrieve active markets using cloudscraper
    try:
        active_markets = get_active_markets_cloudscraper(API_KEY)
    except Exception as e:
        st.error(f"Error fetching active markets: {e}")
        return

    if not active_markets:
        st.error("No active markets found through the API.")
        return

    # Expecting active_markets to be a list of market names, e.g. ["BTC", "ETH", ...]
    market_list = []
    if isinstance(active_markets, list):
        for item in active_markets:
            # Depending on the response structure, adjust accordingly.
            if isinstance(item, dict) and "market" in item:
                market_list.append(item["market"])
            elif isinstance(item, str):
                market_list.append(item)
            else:
                st.warning(f"Item missing 'market' key: {item}")
    else:
        st.error("The structure of 'active_markets' is not a list as expected.")
        return

    if not market_list:
        st.error("The market list is empty or 'market' keys not found.")
        return

    selected_market = get_selected_market(market_list)
    if not selected_market:
        st.error("No market selected.")
        return

    st.subheader(f"Selected Market: {selected_market}")
    st.write(f"Fetching data for **{selected_market}** ...")

    # Retrieve market data using cloudscraper
    try:
        market_data = get_market_data_cloudscraper(API_KEY, selected_market)
    except Exception as e:
        st.error(f"Error fetching market data for {selected_market}: {e}")
        return

    if not market_data:
        st.error(f"No data found for market {selected_market}.")
        return

    df = pd.DataFrame(market_data)
    if "close_time" in df.columns:
        df['close_time'] = pd.to_datetime(df['close_time'], unit='ms', errors='coerce')
    else:
        st.error("The 'close_time' column is missing from the retrieved data.")
        return

    st.write("### Market Data Overview")
    st.dataframe(df.head())

    required_cols = {"close", "last_predict_15m", "last_predict_1h"}
    if not required_cols.issubset(df.columns):
        st.error(
            f"The required columns {required_cols} are not all present. "
            f"Available columns: {list(df.columns)}"
        )
        return

    fig = px.line(
        df,
        x='close_time',
        y=['close', 'last_predict_15m', 'last_predict_1h'],
        title=f"{selected_market} : Close Price & Predictions",
        labels={
            'close_time': 'Time',
            'value': 'Price',
            'variable': 'Metric'
        }
    )
    st.plotly_chart(fig, use_container_width=True)

    st.write(f"### Signals for {selected_market}")
    try:
        signals = get_market_signals_cloudscraper(API_KEY, selected_market)
    except Exception as e:
        st.error(f"Error fetching signals for {selected_market}: {e}")
        return

    if not signals:
        st.warning(f"No signals found for market {selected_market}.")
    else:
        df_signals = pd.DataFrame(signals)
        if 'date' in df_signals.columns:
            df_signals['date'] = pd.to_datetime(df_signals['date'], unit='s', errors='coerce')
        for col in df_signals.columns:
            if df_signals[col].apply(lambda x: isinstance(x, dict)).any():
                df_signals[col] = df_signals[col].apply(lambda x: str(x) if isinstance(x, dict) else x)
        if 'date' in df_signals.columns:
            df_signals = df_signals.sort_values('date', ascending=False)
        st.write("Total number of signals:", len(df_signals))
        st.write("Preview of the last 4 signals:")
        st.dataframe(df_signals.head(4))

if __name__ == "__main__":
    main()