Spaces:
Sleeping
Sleeping
| import time | |
| from typing import List, Dict, Any, Optional, Union | |
| import numpy as np | |
| from .mini_bench.reward_agent import ProgressJudgeAgent | |
| from .reward_postprocessor import REWARD_PROCESSORS, REWARD_PROCESSOR_N_SAMPLES, extract_judge_hash | |
| import json | |
| import os | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| def _process_unit(idx, unit, configs, n_samples, reward_processor, max_retries=5): | |
| """하나의 unit을 처리해 (idx, reward, thought)를 돌려준다.""" | |
| agent = ProgressJudgeAgent(configs) | |
| current_temperature = configs["temperature"] | |
| rewards = [] | |
| n_err = 0 | |
| retry_count = 0 | |
| judge_hash_count_thought = {} | |
| while len(rewards) < n_samples and retry_count < max_retries: | |
| # 외부 API 호출 | |
| responses, _ = agent.generate_probs( | |
| unit, "ours", n=n_samples - len(rewards), temperature=current_temperature | |
| ) | |
| for response in responses: | |
| content = response["response"] | |
| thought = content # 전체를 로그로 저장 | |
| reward = REWARD_PROCESSORS[reward_processor](response) | |
| rewards.append(reward) | |
| if np.isnan(reward) or reward is None: | |
| n_err += 1 | |
| else: | |
| judge_hash = extract_judge_hash(response) | |
| judge_hash_count_thought[judge_hash] = (judge_hash_count_thought.get(judge_hash, (0, None))[0] + 1, thought) | |
| if n_err > 0: | |
| # 실패 시 온도를 높여 재시도 | |
| if n_samples == 1: | |
| current_temperature = 0.5 | |
| retry_count += 1 | |
| reward = np.nanmean(rewards) | |
| if np.isnan(reward): | |
| print(f"[idx={idx}] Warning: reward is NaN after retries -> set 0") | |
| reward = 0.0 | |
| print(judge_hash_count_thought) | |
| thought = max(judge_hash_count_thought.values(), key=lambda x: x[0])[1] | |
| return idx, reward, thought | |
| def get_ar_reward(dataset, base_url, model_name, reward_processor='avg_logits', max_workers=8): | |
| """원본 get_ar_reward를 스레드 버전으로 교체.""" | |
| n_samples = REWARD_PROCESSOR_N_SAMPLES[reward_processor] | |
| temperature = 0.5 if n_samples > 1 else 0.0 | |
| configs = { | |
| "model_name": model_name, | |
| "base_url": base_url, | |
| "api_key": "empty", | |
| "temperature": temperature, | |
| "num_generate": 1, | |
| "use_checklist": True, | |
| "input_type": "text_only", | |
| "text_obs_type": "axtree", | |
| "image_obs_type": "som", | |
| "use_in_progress": True, | |
| "use_multimodal": False, | |
| "use_log_probs": True, | |
| } | |
| t_start = time.time() | |
| results = [None] * len(dataset) | |
| with ThreadPoolExecutor(max_workers=max_workers) as executor: | |
| futures = [ | |
| executor.submit( | |
| _process_unit, idx, unit, configs, n_samples, reward_processor | |
| ) | |
| for idx, unit in enumerate(dataset) | |
| ] | |
| for fut in as_completed(futures): | |
| idx, reward, thought = fut.result() | |
| results[idx] = (reward, thought) | |
| # 순서 보존된 리스트로 분리 | |
| final_rewards = [float(r) for r, _ in results] | |
| thoughts = [t for _, t in results] | |
| print(f"Time taken (threaded): {time.time() - t_start:.2f} s") | |
| return final_rewards, thoughts | |