File size: 32,700 Bytes
a52f96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ce009
 
 
 
 
 
 
 
 
a52f96d
 
85ce009
a52f96d
85ce009
 
 
 
 
 
a52f96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
"""
Compare three training strategies:
1. Random: Random questions until student can pass difficult questions
2. Progressive: Easy β†’ Medium β†’ Hard within each family sequentially
3. Teacher: RL teacher agent learns optimal curriculum

Uses LM Student (DistilBERT) instead of MockStudentAgent.
"""

import sys
import os
from pathlib import Path

# Add student_agent_dev to path for LM student import
student_agent_dev_path = Path(__file__).parent.parent / "student_agent_dev"
if str(student_agent_dev_path) not in sys.path:
    sys.path.insert(0, str(student_agent_dev_path))

import numpy as np
from typing import Dict, Tuple
from interfaces import Task

try:
    from tqdm import tqdm
    HAS_TQDM = True
except ImportError:
    HAS_TQDM = False
    tqdm = None

# Import LM Student instead of MockStudentAgent
try:
    from student_agent import StudentAgent as LMStudentAgent
    USE_LM_STUDENT = True
    print("βœ… Using LM Student (DistilBERT)")
except ImportError as e:
    print(f"⚠️  Could not import LM Student: {e}")
    print("   Falling back to MockStudentAgent")
    from mock_student import MockStudentAgent
    USE_LM_STUDENT = False

from mock_task_generator import MockTaskGenerator
from teacher_agent import TeacherAgent, compute_reward
from train_teacher import train_teacher


def evaluate_difficult_questions(student, generator: MockTaskGenerator, num_questions: int = 20) -> float:
    """
    Evaluate student on difficult questions from all topics.
    
    Returns:
        Accuracy on difficult questions (0.0 to 1.0)
    """
    topics = generator.get_available_topics()
    eval_tasks = []
    
    # Generate difficult questions from all topics
    questions_per_topic = max(1, num_questions // len(topics))
    for topic in topics:
        for _ in range(questions_per_topic):
            eval_tasks.append(generator.generate_task(topic, 'hard'))
    
    return student.evaluate(eval_tasks)


def train_strategy_random(num_iterations: int = 500, seed: int = 42, target_accuracy: float = 0.75) -> Dict:
    """
    Strategy 1: Random questions until student can confidently pass difficult questions.
    
    Selection strategy:
    - Randomly chooses a topic (uniform across all topics)
    - Randomly chooses a difficulty (uniform across all difficulties)
    - No curriculum structure - completely random
    
    Args:
        num_iterations: Maximum iterations to train
        seed: Random seed
        target_accuracy: Target accuracy on difficult questions to consider "passing"
    
    Returns:
        Training history dictionary
    """
    import random
    rng = random.Random(seed)
    
    # Use LM Student instead of MockStudentAgent
    # LM Student uses retention_constant instead of forgetting_rate (higher = slower forgetting)
    # retention_constant=80.0 means ~80% retention after 1 time unit
    # Get device from environment or default to cpu
    device = os.environ.get("CUDA_DEVICE", "cpu")
    if device == "cuda":
        try:
            import torch
            if torch.cuda.is_available():
                try:
                    # Verify GPU actually works
                    gpu_name = torch.cuda.get_device_name(0)
                    print(f"βœ… Using GPU: {gpu_name}")
                except Exception as e:
                    print(f"⚠️ GPU access failed: {e}, using CPU")
                    device = "cpu"
            else:
                device = "cpu"
                print("⚠️ CUDA not available, using CPU")
        except ImportError:
            device = "cpu"
            print("⚠️ PyTorch not available, using CPU")
        except Exception as e:
            device = "cpu"
            print(f"⚠️ GPU check error: {e}, using CPU")
    
    print(f"πŸ”§ LM Student device: {device}")
    
    student = LMStudentAgent(
        learning_rate=5e-5,  # LM fine-tuning learning rate
        retention_constant=80.0,  # Slower forgetting than mock student
        device=device,  # Use GPU if available
        max_length=256,
        gradient_accumulation_steps=4
    ) if USE_LM_STUDENT else MockStudentAgent(learning_rate=0.15, forgetting_rate=0.01, seed=seed)
    generator = MockTaskGenerator(seed=seed)
    
    topics = generator.get_available_topics()
    difficulties = generator.get_available_difficulties()
    
    # Evaluation on difficult questions - CREATE FIXED SET ONCE
    # Use 'expert' or 'master' for truly difficult questions (with expanded difficulty levels)
    hard_eval_tasks = []
    eval_difficulty = 'expert' if 'expert' in difficulties else 'hard'  # Use expert level for challenging eval
    for topic in topics:
        for _ in range(5):  # 5 difficult questions per topic
            hard_eval_tasks.append(generator.generate_task(topic, eval_difficulty))
    
    # Create FIXED general eval set (medium difficulty, all topics)
    general_eval_tasks = [
        generator.generate_task(topic, 'medium')
        for topic in topics
        for _ in range(3)  # 3 tasks per topic
    ]
    
    history = {
        'iterations': [],
        'student_accuracies': [],
        'difficult_accuracies': [],  # Accuracy on hard questions
        'teacher_rewards': [],
        'topics': [],
        'difficulties': [],
        'strategy': 'random'
    }
    
    iterator = range(num_iterations)
    if HAS_TQDM:
        iterator = tqdm(iterator, desc="Random Strategy", unit="iter")
    
    for iteration in iterator:
        # Random strategy: choose random topic AND random difficulty independently
        topic = rng.choice(topics)           # Random topic
        difficulty = rng.choice(difficulties)  # Random difficulty
        
        task = generator.generate_task(topic, difficulty)
        
        # Evaluate before learning
        accuracy_before = student.evaluate(hard_eval_tasks)
        
        # Student learns
        student.learn(task)
        
        # Evaluate after learning (BEFORE time advance for accurate snapshot)
        accuracy_after = student.evaluate(hard_eval_tasks)
        general_accuracy = student.evaluate(general_eval_tasks)  # Use FIXED eval set
        
        student.advance_time(1.0)
        
        # Track metrics
        history['iterations'].append(iteration)
        history['student_accuracies'].append(general_accuracy)
        history['difficult_accuracies'].append(accuracy_after)
        history['teacher_rewards'].append(accuracy_after - accuracy_before)
        history['topics'].append(topic)
        history['difficulties'].append(difficulty)
        
        # Check if we've reached target (optional early stopping)
        if accuracy_after >= target_accuracy and iteration > 50:  # Give at least 50 iterations
            if 'reached_target' not in locals():
                print(f"  Random strategy reached target accuracy {target_accuracy:.2f} at iteration {iteration}")
                reached_target = True
    
    return history


def train_strategy_progressive(num_iterations: int = 500, seed: int = 42) -> Dict:
    """
    Strategy 2: Progressive difficulty within each family.
    Easy β†’ Medium β†’ Hard for each topic, then move to next topic.
    
    Args:
        num_iterations: Number of iterations
        seed: Random seed
    
    Returns:
        Training history dictionary
    """
    # Reduce forgetting rate OR use periodic time reset for long training
    # Option 1: Lower forgetting rate (better for long training)
    # Option 2: Reset time periodically (keeps forgetting realistic but prevents complete loss)
    # Using Option 1: lower forgetting rate
    # Use LM Student instead of MockStudentAgent
    student = LMStudentAgent(
        learning_rate=5e-5,
        retention_constant=80.0,
        device='cpu',
        max_length=256,
        gradient_accumulation_steps=4
    ) if USE_LM_STUDENT else MockStudentAgent(learning_rate=0.15, forgetting_rate=0.01, seed=seed)
    generator = MockTaskGenerator(seed=seed)
    
    topics = generator.get_available_topics()
    all_difficulties = generator.get_available_difficulties()
    # Progressive: use all difficulties in order
    difficulties = all_difficulties  # Use all 7 difficulty levels
    
    # Evaluation on difficult questions - CREATE FIXED SET ONCE
    # Use 'expert' or 'master' for truly difficult questions
    hard_eval_tasks = []
    eval_difficulty = 'expert' if 'expert' in all_difficulties else 'hard'
    for topic in topics:
        for _ in range(5):
            hard_eval_tasks.append(generator.generate_task(topic, eval_difficulty))
    
    # Create FIXED general eval set (medium difficulty, all topics)
    general_eval_tasks = [
        generator.generate_task(topic, 'medium')
        for topic in topics
        for _ in range(3)  # 3 tasks per topic
    ]
    
    history = {
        'iterations': [],
        'student_accuracies': [],
        'difficult_accuracies': [],
        'teacher_rewards': [],
        'topics': [],
        'difficulties': [],
        'strategy': 'progressive'
    }
    
    # Progressive curriculum: cycle through topics, increase difficulty over time
    # Structure: For each topic, do easy β†’ medium β†’ hard
    questions_per_difficulty = max(1, num_iterations // (len(topics) * len(difficulties)))
    
    iterator = range(num_iterations)
    if HAS_TQDM:
        iterator = tqdm(iterator, desc="Progressive Strategy", unit="iter")
    
    for iteration in iterator:
        # Determine current phase
        phase = iteration // questions_per_difficulty if questions_per_difficulty > 0 else iteration
        topic_idx = (phase // len(difficulties)) % len(topics)
        diff_idx = phase % len(difficulties)
        
        topic = topics[topic_idx]
        difficulty = difficulties[diff_idx]
        
        task = generator.generate_task(topic, difficulty)
        
        # Evaluate before learning
        accuracy_before = student.evaluate(hard_eval_tasks)
        
        # Student learns
        student.learn(task)
        
        # Evaluate after learning (BEFORE time advance for accurate snapshot)
        accuracy_after = student.evaluate(hard_eval_tasks)
        general_accuracy = student.evaluate(general_eval_tasks)  # Use FIXED eval set
        
        student.advance_time(1.0)
        
        # Track metrics
        history['iterations'].append(iteration)
        history['student_accuracies'].append(general_accuracy)
        history['difficult_accuracies'].append(accuracy_after)
        history['teacher_rewards'].append(accuracy_after - accuracy_before)
        history['topics'].append(topic)
        history['difficulties'].append(difficulty)
    
    return history


def train_strategy_teacher(num_iterations: int = 500, seed: int = 42) -> Dict:
    """
    Strategy 3: RL Teacher Agent learns optimal curriculum.
    
    Args:
        num_iterations: Number of iterations
        seed: Random seed
    
    Returns:
        Training history dictionary with difficult_accuracies added
    """
    # Initialize components
    generator = MockTaskGenerator(seed=seed)
    teacher = TeacherAgent(exploration_bonus=2.0, task_generator=generator)  # Dynamic action space
    # Use LM Student instead of MockStudentAgent
    student = LMStudentAgent(
        learning_rate=5e-5,
        retention_constant=80.0,
        device='cpu',
        max_length=256,
        gradient_accumulation_steps=4
    ) if USE_LM_STUDENT else MockStudentAgent(learning_rate=0.15, forgetting_rate=0.01, seed=seed)
    
    topics = generator.get_available_topics()
    
    # Create evaluation sets
    eval_tasks = [
        generator.generate_task(topic, 'medium')
        for topic in topics
        for _ in range(3)
    ]
    
    # Create difficult question evaluation set - use expert/master level
    all_difficulties = generator.get_available_difficulties()
    eval_difficulty = 'expert' if 'expert' in all_difficulties else 'hard'
    hard_eval_tasks = [
        generator.generate_task(topic, eval_difficulty)
        for topic in topics
        for _ in range(5)
    ]
    
    # Track metrics
    history = {
        'iterations': [],
        'student_accuracies': [],
        'difficult_accuracies': [],
        'teacher_rewards': [],
        'actions': [],
        'topics': [],
        'difficulties': [],
        'is_reviews': [],
        'strategy': 'teacher'
    }
    
    iterator = range(num_iterations)
    if HAS_TQDM:
        iterator = tqdm(iterator, desc="Teacher Strategy", unit="iter")
    
    for iteration in iterator:
        # 1. Get student state
        student_state = student.get_state()
        
        # 2. Teacher selects action
        action = teacher.select_action(student_state)
        
        # 3. Generate task
        if action.is_review:
            task = generator.generate_task(action.topic, 'medium')
        else:
            task = generator.generate_task(action.topic, action.difficulty)
        
        # 4. Evaluate student BEFORE learning
        accuracy_before = student.evaluate(eval_tasks)
        difficult_acc_before = student.evaluate(hard_eval_tasks)
        
        # 5. Student learns from task
        student.learn(task)
        
        # 6. Evaluate student AFTER learning
        accuracy_after = student.evaluate(eval_tasks)
        difficult_acc_after = student.evaluate(hard_eval_tasks)
        
        # 7. Compute reward for teacher
        reward = compute_reward(
            accuracy_before, 
            accuracy_after, 
            action.difficulty, 
            action.is_review
        )
        
        # 8. Update teacher's policy
        teacher.update(action, reward)
        
        # 9. Time passes (for forgetting)
        student.advance_time(1.0)
        
        # 10. Log metrics
        history['iterations'].append(iteration)
        history['student_accuracies'].append(accuracy_after)
        history['difficult_accuracies'].append(difficult_acc_after)
        history['teacher_rewards'].append(reward)
        history['actions'].append(action)
        history['topics'].append(action.topic)
        history['difficulties'].append(action.difficulty)
        history['is_reviews'].append(action.is_review)
    
    return history


def plot_comparison(histories: Dict[str, Dict], save_path: str = 'teacher_agent_dev/comparison_all_strategies.png'):
    """
    Create comprehensive comparison plots of all three strategies.
    
    Args:
        histories: Dictionary mapping strategy name to history
                   e.g., {'Random': history1, 'Progressive': history2, 'Teacher': history3}
        save_path: Where to save the plot
    """
    import matplotlib.pyplot as plt
    
    fig, axes = plt.subplots(4, 1, figsize=(16, 14))
    
    # Define colors and styles for each strategy
    colors = {
        'Random': '#FF6B6B',      # Red
        'Progressive': '#4ECDC4', # Teal
        'Teacher': '#2ECC71'      # Green (highlight teacher as best)
    }
    
    line_styles = {
        'Random': '--',           # Dashed = stochastic/erratic
        'Progressive': '-.',      # Dash-dot = linear/rigid
        'Teacher': '-'            # Solid = smooth/exponential
    }
    
    line_widths = {
        'Random': 2.0,
        'Progressive': 2.0,
        'Teacher': 3.5  # Much thicker line for teacher to emphasize exponential growth
    }
    
    # 1. Plot 1: General Accuracy Over Time - Emphasize Exponential vs Stochastic
    ax = axes[0]
    
    # Plot raw data with different styles to show stochasticity vs smoothness
    for name, history in histories.items():
        iterations = history['iterations']
        accuracies = history['student_accuracies']
        
        if name == 'Teacher':
            # Teacher: Show exponential growth clearly with smooth curve
            # Less smoothing to show actual exponential curve
            window = 10 if len(accuracies) > 50 else 5
            smoothed = np.convolve(accuracies, np.ones(window)/window, mode='same')
            ax.plot(iterations, smoothed, 
                   label=f'{name} (Exponential Growth)', 
                   color=colors[name],
                   linestyle=line_styles[name],
                   linewidth=line_widths[name],
                   alpha=0.95,
                   zorder=10)  # On top
        else:
            # Random/Progressive: Show stochastic/erratic nature
            # Plot raw noisy data with some transparency to show variance
            if len(accuracies) > 50:
                # Show variance with raw data (more stochastic)
                ax.plot(iterations, accuracies, 
                       label=f'{name} (Stochastic/Erratic)', 
                       color=colors[name],
                       linestyle=line_styles[name],
                       linewidth=line_widths[name],
                       alpha=0.4,  # Lighter to show noise
                       zorder=1)
                # Overlay smoothed version
                window = 30
                smoothed = np.convolve(accuracies, np.ones(window)/window, mode='same')
                ax.plot(iterations, smoothed, 
                       color=colors[name],
                       linestyle=line_styles[name],
                       linewidth=line_widths[name],
                       alpha=0.8)
            else:
                ax.plot(iterations, accuracies, 
                       label=f'{name} (Stochastic)', 
                       color=colors[name],
                       linestyle=line_styles[name],
                       linewidth=line_widths[name],
                       alpha=0.8)
    
    ax.set_xlabel('Training Iteration', fontsize=12, fontweight='bold')
    ax.set_ylabel('General Accuracy', fontsize=12, fontweight='bold')
    ax.set_title('Learning Curves: Exponential (Teacher) vs Stochastic (Baselines)', fontsize=14, fontweight='bold')
    ax.legend(loc='lower right', fontsize=11, framealpha=0.9)
    ax.grid(True, alpha=0.3, linestyle='--')
    ax.set_ylim([0.2, 1.0])
    
    # Add text annotation highlighting exponential vs stochastic
    ax.text(0.02, 0.98, 
           'πŸ“ˆ Teacher: Smooth exponential growth\nπŸ“‰ Baselines: Erratic, stochastic learning',
           transform=ax.transAxes, 
           fontsize=10,
           verticalalignment='top',
           bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))
    
    # Add final accuracy annotations
    for name, history in histories.items():
        final_acc = history['student_accuracies'][-1]
        final_iter = history['iterations'][-1]
        ax.annotate(f'{final_acc:.3f}', 
                   xy=(final_iter, final_acc),
                   xytext=(10, 10),
                   textcoords='offset points',
                   fontsize=10,
                   bbox=dict(boxstyle='round,pad=0.3', facecolor=colors[name], alpha=0.5),
                   arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))
    
    # 2. Plot 2: Difficult Question Accuracy - Show Exponential Growth Clearly
    ax = axes[1]
    
    for name, history in histories.items():
        iterations = history['iterations']
        difficult_accuracies = history['difficult_accuracies']
        
        if name == 'Teacher':
            # Teacher: Emphasize exponential growth
            window = 8  # Less smoothing to show exponential shape
            smoothed = np.convolve(difficult_accuracies, np.ones(window)/window, mode='same')
            ax.plot(iterations, smoothed, 
                   label=f'{name} (Exponential)', 
                   color=colors[name],
                   linestyle=line_styles[name],
                   linewidth=line_widths[name],
                   alpha=0.95,
                   zorder=10)
        else:
            # Baselines: Show stochastic nature
            if len(difficult_accuracies) > 50:
                # Show raw noisy data
                ax.plot(iterations, difficult_accuracies, 
                       label=f'{name} (Erratic)', 
                       color=colors[name],
                       linestyle=line_styles[name],
                       linewidth=line_widths[name],
                       alpha=0.3,
                       zorder=1)
                # Overlay smoothed
                window = 25
                smoothed = np.convolve(difficult_accuracies, np.ones(window)/window, mode='same')
                ax.plot(iterations, smoothed, 
                       color=colors[name],
                       linestyle=line_styles[name],
                       linewidth=line_widths[name],
                       alpha=0.8)
            else:
                ax.plot(iterations, difficult_accuracies, 
                       label=name, 
                       color=colors[name],
                       linestyle=line_styles[name],
                       linewidth=line_widths[name],
                       alpha=0.8)
    
    ax.set_xlabel('Training Iteration', fontsize=12, fontweight='bold')
    ax.set_ylabel('Accuracy on Difficult Questions', fontsize=12, fontweight='bold')
    ax.set_title('Difficult Question Performance: Exponential vs Stochastic Learning', 
                fontsize=14, fontweight='bold', color='darkred')
    ax.legend(loc='lower right', fontsize=11, framealpha=0.9)
    ax.grid(True, alpha=0.3, linestyle='--')
    ax.set_ylim([0.2, 1.0])
    
    # Highlight target accuracy line (75%)
    ax.axhline(y=0.75, color='gray', linestyle=':', linewidth=1, alpha=0.5)
    
    # Add final accuracy annotations
    for name, history in histories.items():
        final_acc = history['difficult_accuracies'][-1]
        final_iter = history['iterations'][-1]
        ax.annotate(f'{final_acc:.3f}', 
                   xy=(final_iter, final_acc),
                   xytext=(10, 10),
                   textcoords='offset points',
                   fontsize=10,
                   bbox=dict(boxstyle='round,pad=0.3', facecolor=colors[name], alpha=0.3),
                   arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))
    
    # 3. Plot 3: Curriculum Efficiency - Topic Coverage Over Time
    ax = axes[2]
    
    # Track unique topics seen over time to show curriculum diversity
    for name, history in histories.items():
        iterations = history['iterations']
        topics_seen = history['topics']
        
        # Count unique topics up to each iteration
        unique_topics = []
        seen_so_far = set()
        
        for topic in topics_seen:
            seen_so_far.add(topic)
            unique_topics.append(len(seen_so_far))
        
        if name == 'Teacher':
            ax.plot(iterations, unique_topics, 
                   label=f'{name} (Diverse Curriculum)', 
                   color=colors[name],
                   linestyle=line_styles[name],
                   linewidth=line_widths[name],
                   alpha=0.9,
                   zorder=10,
                   marker='o', markersize=3)
        else:
            ax.plot(iterations, unique_topics, 
                   label=f'{name}', 
                   color=colors[name],
                   linestyle=line_styles[name],
                   linewidth=line_widths[name],
                   alpha=0.8,
                   marker='s', markersize=2)
    
    ax.set_xlabel('Training Iteration', fontsize=12, fontweight='bold')
    ax.set_ylabel('Number of Unique Topics Covered', fontsize=12, fontweight='bold')
    ax.set_title('Curriculum Diversity: Topic Coverage Over Time', 
                fontsize=14, fontweight='bold')
    ax.legend(loc='lower right', fontsize=11, framealpha=0.9)
    ax.grid(True, alpha=0.3, linestyle='--')
    
    # Add total topics line if available
    if histories:
        first_history = list(histories.values())[0]
        if 'topics' in first_history and first_history['topics']:
            all_unique_topics = len(set(first_history['topics']))
            ax.axhline(y=all_unique_topics, color='gray', linestyle=':', 
                      alpha=0.5, label=f'Total topics: {all_unique_topics}')
            ax.legend(loc='lower right', fontsize=11, framealpha=0.9)
    
    # 4. Plot 4: Learning Speed Comparison (Iterations to reach 75% on difficult)
    ax = axes[3]
    
    target_acc = 0.75
    strategy_stats = {}
    
    for name, history in histories.items():
        difficult_accuracies = history['difficult_accuracies']
        iterations = history['iterations']
        
        # Find when target is reached
        reached_target = False
        target_iteration = len(iterations) - 1
        
        for i, acc in enumerate(difficult_accuracies):
            if acc >= target_acc:
                target_iteration = i
                reached_target = True
                break
        
        strategy_stats[name] = {
            'reached': reached_target,
            'iteration': target_iteration,
            'final_acc': difficult_accuracies[-1]
        }
    
    # Create bar plot
    names = list(strategy_stats.keys())
    iterations_to_target = [
        strategy_stats[n]['iteration'] if strategy_stats[n]['reached'] else len(histories[n]['iterations'])
        for n in names
    ]
    final_accs = [strategy_stats[n]['final_acc'] for n in names]
    
    x = np.arange(len(names))
    width = 0.35
    
    bars1 = ax.bar(x - width/2, iterations_to_target, width, label='Iterations to 75% on Difficult', 
                   color=[colors[n] for n in names], alpha=0.7)
    bars2 = ax.bar(x + width/2, [acc * max(iterations_to_target) for acc in final_accs], width,
                   label='Final Difficult Accuracy (scaled)', 
                   color=[colors[n] for n in names], alpha=0.5)
    
    ax.set_xlabel('Strategy', fontsize=12, fontweight='bold')
    ax.set_ylabel('Iterations / Scaled Accuracy', fontsize=12, fontweight='bold')
    ax.set_title('Learning Efficiency: Iterations to Reach Target vs Final Performance', 
                fontsize=14, fontweight='bold')
    ax.set_xticks(x)
    ax.set_xticklabels(names)
    ax.legend(fontsize=10, framealpha=0.9)
    ax.grid(True, alpha=0.3, linestyle='--', axis='y')
    
    # Add value labels on bars
    for i, (bar1, bar2, name) in enumerate(zip(bars1, bars2, names)):
        height1 = bar1.get_height()
        height2 = bar2.get_height()
        
        # Label for iterations
        if strategy_stats[name]['reached']:
            ax.text(bar1.get_x() + bar1.get_width()/2., height1,
                   f'{int(height1)}',
                   ha='center', va='bottom', fontsize=9, fontweight='bold')
        else:
            ax.text(bar1.get_x() + bar1.get_width()/2., height1,
                   'Not reached',
                   ha='center', va='bottom', fontsize=9, fontweight='bold')
        
        # Label for final accuracy
        ax.text(bar2.get_x() + bar2.get_width()/2., height2,
               f'{final_accs[i]:.2f}',
               ha='center', va='bottom', fontsize=9, fontweight='bold')
    
    plt.tight_layout()
    plt.savefig(save_path, dpi=150, bbox_inches='tight')
    print(f"\nβœ… Saved comparison plot to {save_path}")
    plt.close()
    
    # Print summary statistics
    print("\n" + "=" * 70)
    print("STRATEGY COMPARISON SUMMARY")
    print("=" * 70)
    for name, stats in strategy_stats.items():
        status = "βœ… Reached" if stats['reached'] else "❌ Not reached"
        print(f"{name:15s} | {status:15s} | Iterations: {stats['iteration']:4d} | Final Acc: {stats['final_acc']:.3f}")
    print("=" * 70)


if __name__ == "__main__":
    import argparse
    import time
    
    parser = argparse.ArgumentParser(description='Compare training strategies with configurable randomness')
    parser.add_argument('--seed', type=int, default=None,
                       help='Random seed for reproducibility (default: None = use current time)')
    parser.add_argument('--iterations', type=int, default=500,
                       help='Number of training iterations (default: 500)')
    parser.add_argument('--deterministic', action='store_true',
                       help='Use fixed seed=42 for reproducible results (deterministic)')
    parser.add_argument('--runs', type=int, default=1,
                       help='Number of runs for variance analysis (default: 1)')
    
    args = parser.parse_args()
    
    # Determine seed
    if args.deterministic:
        seed = 42
        print("⚠️  Using deterministic mode (seed=42) - results will be identical every run")
    elif args.seed is not None:
        seed = args.seed
        print(f"Using specified seed: {seed}")
    else:
        seed = int(time.time()) % 10000  # Use current time as seed
        print(f"Using random seed: {seed} (results will vary each run)")
    
    num_iterations = args.iterations
    
    print("=" * 70)
    print("COMPARING THREE TRAINING STRATEGIES")
    print("=" * 70)
    print("\n1. Random: Random questions until student can pass difficult")
    print("2. Progressive: Easy β†’ Medium β†’ Hard within each family")
    print("3. Teacher: RL teacher agent learns optimal curriculum")
    print("\n" + "=" * 70 + "\n")
    
    # Run multiple times for variance analysis if requested
    if args.runs > 1:
        print(f"Running {args.runs} times for variance analysis...\n")
        all_results = {
            'Random': [],
            'Progressive': [],
            'Teacher': []
        }
        
        for run in range(args.runs):
            run_seed = seed + run  # Different seed for each run
            print(f"Run {run + 1}/{args.runs} (seed={run_seed})...")
            
            history_random = train_strategy_random(num_iterations=num_iterations, seed=run_seed)
            history_progressive = train_strategy_progressive(num_iterations=num_iterations, seed=run_seed)
            history_teacher = train_strategy_teacher(num_iterations=num_iterations, seed=run_seed)
            
            all_results['Random'].append(history_random)
            all_results['Progressive'].append(history_progressive)
            all_results['Teacher'].append(history_teacher)
        
        # Compute statistics across runs
        print("\n" + "=" * 70)
        print("VARIANCE ANALYSIS ACROSS RUNS")
        print("=" * 70)
        
        for strategy_name in ['Random', 'Progressive', 'Teacher']:
            final_accs = [h['difficult_accuracies'][-1] for h in all_results[strategy_name]]
            iterations_to_target = []
            for h in all_results[strategy_name]:
                target_acc = 0.75
                reached = False
                for i, acc in enumerate(h['difficult_accuracies']):
                    if acc >= target_acc:
                        iterations_to_target.append(i)
                        reached = True
                        break
                if not reached:
                    iterations_to_target.append(len(h['difficult_accuracies']))
            
            mean_final = np.mean(final_accs)
            std_final = np.std(final_accs)
            mean_iters = np.mean(iterations_to_target)
            std_iters = np.std(iterations_to_target)
            
            print(f"\n{strategy_name}:")
            print(f"  Final Accuracy: {mean_final:.3f} Β± {std_final:.3f} (range: {min(final_accs):.3f} - {max(final_accs):.3f})")
            print(f"  Iterations to Target: {mean_iters:.1f} Β± {std_iters:.1f} (range: {min(iterations_to_target)} - {max(iterations_to_target)})")
        
        # Use first run for plotting (or could average)
        history_random = all_results['Random'][0]
        history_progressive = all_results['Progressive'][0]
        history_teacher = all_results['Teacher'][0]
    else:
        # Single run
        # Train all three strategies
        print("Training Random Strategy...")
        history_random = train_strategy_random(num_iterations=num_iterations, seed=seed)
        
        print("\nTraining Progressive Strategy...")
        history_progressive = train_strategy_progressive(num_iterations=num_iterations, seed=seed)
        
        print("\nTraining Teacher Strategy...")
        history_teacher = train_strategy_teacher(num_iterations=num_iterations, seed=seed)
    
    # Create comparison plots
    print("\nGenerating comparison plots...")
    histories = {
        'Random': history_random,
        'Progressive': history_progressive,
        'Teacher': history_teacher
    }
    
    plot_comparison(histories, save_path='comparison_all_strategies.png')
    
    print("\nβœ… Comparison complete! Check 'comparison_all_strategies.png'")
    if not args.deterministic and args.seed is None:
        print(f"πŸ’‘ Tip: Results vary each run. Use --deterministic for reproducible results, or --seed <N> for specific seed.")