File size: 3,189 Bytes
c3efd49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
title: Voice Model RL Training
emoji: πŸŽ™οΈ
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
python_version: 3.11
hardware: t4-small
---

# Voice Model RL Training

Train open-source voice models using Reinforcement Learning with PPO and REINFORCE algorithms.

## Features

- 🎯 **Multiple RL Algorithms**: Choose between PPO and REINFORCE
- πŸš€ **GPU Acceleration**: Automatic GPU detection and usage
- πŸ“Š **Real-time Monitoring**: Track training progress in real-time
- 🎡 **Model Comparison**: Compare base vs trained models
- πŸ’Ύ **Checkpoint Management**: Automatic model saving and loading
- 🎀 **Multiple Base Models**: Support for Wav2Vec2, WavLM, and more

## Supported Models

- Facebook Wav2Vec2 (Base & Large)
- Microsoft WavLM Base Plus
- Any compatible HuggingFace speech model

## How to Use

### 1. Training Tab

1. **Select Base Model**: Choose from available pretrained models
2. **Configure Algorithm**: Select PPO (recommended) or REINFORCE
3. **Set Parameters**:
   - Episodes: 10-100 (start with 20 for testing)
   - Learning Rate: 1e-5 to 1e-3 (default: 3e-4)
   - Batch Size: 4-64 (depends on GPU memory)
4. **Start Training**: Click "Start Training" and monitor progress

### 2. Compare Results Tab

1. **Upload Audio**: Provide a test audio sample
2. **Generate Comparison**: Process through both models
3. **Listen**: Compare base vs trained model outputs

## Reward Functions

The training optimizes for three key metrics:

- **Clarity** (33%): Audio signal quality and noise reduction
- **Naturalness** (33%): Natural speech patterns and prosody
- **Accuracy** (34%): Fidelity to original content

## Hardware Requirements

- **CPU**: Works but slow (5-10 min per episode)
- **GPU**: Recommended (T4 or better) (1-2 min per episode)
- **Memory**: 8GB+ RAM, 4GB+ VRAM

## Technical Details

### RL Algorithms

**PPO (Proximal Policy Optimization)**
- More stable training
- Uses value function
- Better for most cases
- Slightly slower per episode

**REINFORCE**
- Simpler algorithm
- Higher variance
- Faster per episode
- May need more episodes

### Training Process

1. Load pretrained base model
2. Add RL policy/value heads
3. Train using custom reward function
4. Save checkpoints periodically
5. Generate comparisons

## Local Development

Clone and run locally:

```bash
git clone https://huggingface.co/spaces/USERNAME/voice-model-rl-training
cd voice-model-rl-training
pip install -r requirements.txt
python app.py
```

## Repository Structure

```
voice-rl-training/
β”œβ”€β”€ app.py                 # Main Gradio application
β”œβ”€β”€ requirements.txt       # Python dependencies
β”œβ”€β”€ README.md             # This file
β”œβ”€β”€ voice_rl/             # Core training modules
β”‚   β”œβ”€β”€ models/           # Model wrappers
β”‚   β”œβ”€β”€ rl/               # RL algorithms
β”‚   β”œβ”€β”€ training/         # Training orchestration
β”‚   β”œβ”€β”€ data/             # Data handling
β”‚   β”œβ”€β”€ monitoring/       # Metrics and visualization
β”‚   └── evaluation/       # Model evaluation
└── workspace/            # Training outputs (git-ignored)
```