File size: 11,678 Bytes
c3efd49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
"""Policy wrapper for making voice models RL-compatible."""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple, Optional
import logging

logger = logging.getLogger(__name__)


class PolicyValueHead(nn.Module):
    """
    Policy and value head for RL training on voice models.

    Adds a policy head (for action log probabilities) and value head
    (for state value estimation) on top of a voice model's hidden states.
    """

    def __init__(
        self,
        hidden_size: int,
        action_dim: int = 256,
        value_hidden_size: int = 128
    ):
        """
        Initialize policy and value heads.

        Args:
            hidden_size: Size of the base model's hidden states
            action_dim: Dimensionality of the action space
            value_hidden_size: Hidden size for value network
        """
        super().__init__()

        # Policy head - outputs action logits
        self.policy_head = nn.Sequential(
            nn.Linear(hidden_size, hidden_size // 2),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_size // 2, action_dim)
        )

        # Value head - outputs state value estimate
        self.value_head = nn.Sequential(
            nn.Linear(hidden_size, value_hidden_size),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(value_hidden_size, 1)
        )

        logger.info(f"Initialized PolicyValueHead with hidden_size={hidden_size}, action_dim={action_dim}")

    def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Forward pass through policy and value heads.

        Args:
            hidden_states: Hidden states from base model [batch, seq_len, hidden_size]

        Returns:
            Tuple of (action_logits, state_values)
        """
        # Pool hidden states (mean pooling over sequence)
        pooled = hidden_states.mean(dim=1)  # [batch, hidden_size]

        # Get action logits and values
        action_logits = self.policy_head(pooled)  # [batch, action_dim]
        state_values = self.value_head(pooled)    # [batch, 1]

        return action_logits, state_values


class RLVoiceModel(nn.Module):
    """
    RL-compatible wrapper for voice models.

    Wraps a HuggingFace voice model and adds policy/value heads
    for reinforcement learning training.
    """

    def __init__(
        self,
        base_model: nn.Module,
        hidden_size: int,
        action_dim: int = 256,
        action_representation: str = "discrete"
    ):
        """
        Initialize RL voice model wrapper.

        Args:
            base_model: Base voice model (e.g., wav2vec2)
            hidden_size: Hidden size of base model
            action_dim: Dimensionality of action space
            action_representation: "discrete" or "continuous"
        """
        super().__init__()

        self.base_model = base_model
        self.hidden_size = hidden_size
        self.action_dim = action_dim
        self.action_representation = action_representation

        # Add policy and value heads
        self.policy_value_head = PolicyValueHead(
            hidden_size=hidden_size,
            action_dim=action_dim
        )

        logger.info(f"Initialized RLVoiceModel with action_representation={action_representation}")

    def forward(
        self,
        input_features: torch.Tensor,
        return_hidden_states: bool = False,
        **kwargs
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        """
        Forward pass for RL training.

        Args:
            input_features: Input audio features [batch, seq_len, features]
            return_hidden_states: Whether to return base model hidden states
            **kwargs: Additional arguments for base model

        Returns:
            Tuple of (log_probs, values, hidden_states)
        """
        # Get base model outputs
        base_outputs = self.base_model(input_features, **kwargs)

        # Extract hidden states
        if hasattr(base_outputs, 'last_hidden_state'):
            hidden_states = base_outputs.last_hidden_state
        elif isinstance(base_outputs, torch.Tensor):
            hidden_states = base_outputs
        else:
            hidden_states = base_outputs[0]

        # Get policy and value outputs
        action_logits, state_values = self.policy_value_head(hidden_states)

        # Compute log probabilities
        if self.action_representation == "discrete":
            log_probs = F.log_softmax(action_logits, dim=-1)
        else:
            # For continuous actions, return the logits directly
            log_probs = action_logits

        if return_hidden_states:
            return log_probs, state_values, hidden_states
        else:
            return log_probs, state_values, None

    def sample_action(
        self,
        input_features: torch.Tensor,
        deterministic: bool = False
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Sample actions from the policy.

        Args:
            input_features: Input audio features
            deterministic: If True, take most likely action

        Returns:
            Tuple of (actions, log_probs, values)
        """
        log_probs, values, _ = self.forward(input_features)

        if self.action_representation == "discrete":
            if deterministic:
                actions = log_probs.argmax(dim=-1)
            else:
                # Sample from categorical distribution
                probs = torch.exp(log_probs)
                actions = torch.multinomial(probs, num_samples=1).squeeze(-1)

            # Get log prob of selected actions
            action_log_probs = log_probs.gather(-1, actions.unsqueeze(-1)).squeeze(-1)
        else:
            # For continuous actions, add noise for exploration
            if deterministic:
                actions = log_probs
            else:
                actions = log_probs + torch.randn_like(log_probs) * 0.1
            action_log_probs = -0.5 * ((actions - log_probs) ** 2).sum(dim=-1)

        return actions, action_log_probs, values

    def evaluate_actions(
        self,
        input_features: torch.Tensor,
        actions: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Evaluate actions (for PPO training).

        Args:
            input_features: Input audio features
            actions: Actions to evaluate

        Returns:
            Tuple of (log_probs, values, entropy)
        """
        log_probs, values, _ = self.forward(input_features)

        if self.action_representation == "discrete":
            # Get log probs of given actions
            action_log_probs = log_probs.gather(-1, actions.unsqueeze(-1)).squeeze(-1)

            # Compute entropy
            probs = torch.exp(log_probs)
            entropy = -(probs * log_probs).sum(dim=-1).mean()
        else:
            # For continuous actions
            action_log_probs = -0.5 * ((actions - log_probs) ** 2).sum(dim=-1)

            # Entropy for continuous (Gaussian assumption)
            entropy = 0.5 * log_probs.shape[-1] * (1.0 + torch.log(torch.tensor(2.0 * 3.14159)))

        return action_log_probs, values.squeeze(-1), entropy

    def get_base_model(self) -> nn.Module:
        """Get the underlying base model."""
        return self.base_model

    def freeze_base_model(self) -> None:
        """Freeze base model parameters (only train policy/value heads)."""
        for param in self.base_model.parameters():
            param.requires_grad = False
        logger.info("Froze base model parameters")

    def unfreeze_base_model(self) -> None:
        """Unfreeze base model parameters."""
        for param in self.base_model.parameters():
            param.requires_grad = True
        logger.info("Unfroze base model parameters")


class SequentialVoicePolicy(nn.Module):
    """
    Sequential policy for frame-by-frame voice generation.

    For autoregressive voice generation where each frame is an action.
    """

    def __init__(
        self,
        base_model: nn.Module,
        hidden_size: int,
        frame_size: int = 80,  # e.g., 80-dim mel spectrogram
        max_seq_len: int = 1000
    ):
        """
        Initialize sequential voice policy.

        Args:
            base_model: Base model for processing context
            hidden_size: Hidden size
            frame_size: Size of each output frame
            max_seq_len: Maximum sequence length
        """
        super().__init__()

        self.base_model = base_model
        self.hidden_size = hidden_size
        self.frame_size = frame_size
        self.max_seq_len = max_seq_len

        # Frame generation network
        self.frame_generator = nn.LSTM(
            input_size=hidden_size + frame_size,
            hidden_size=hidden_size,
            num_layers=2,
            batch_first=True
        )

        # Output projection
        self.output_projection = nn.Linear(hidden_size, frame_size)

        # Value network
        self.value_net = nn.Sequential(
            nn.Linear(hidden_size, hidden_size // 2),
            nn.ReLU(),
            nn.Linear(hidden_size // 2, 1)
        )

        logger.info(f"Initialized SequentialVoicePolicy with frame_size={frame_size}")

    def forward(
        self,
        input_features: torch.Tensor,
        previous_frames: Optional[torch.Tensor] = None,
        num_frames: int = 10
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Generate sequence of frames.

        Args:
            input_features: Input conditioning features
            previous_frames: Previous generated frames (for autoregression)
            num_frames: Number of frames to generate

        Returns:
            Tuple of (generated_frames, log_probs, values)
        """
        batch_size = input_features.shape[0]

        # Get context from base model
        base_outputs = self.base_model(input_features)
        if hasattr(base_outputs, 'last_hidden_state'):
            context = base_outputs.last_hidden_state.mean(dim=1)  # [batch, hidden]
        else:
            context = base_outputs.mean(dim=1) if len(base_outputs.shape) > 2 else base_outputs

        # Initialize
        if previous_frames is None:
            current_frame = torch.zeros(batch_size, self.frame_size, device=input_features.device)
        else:
            current_frame = previous_frames[:, -1]

        hidden = None
        generated_frames = []
        log_probs = []

        # Generate frames autoregressively
        for t in range(num_frames):
            # Combine context and previous frame
            lstm_input = torch.cat([context, current_frame], dim=-1).unsqueeze(1)

            # LSTM step
            lstm_out, hidden = self.frame_generator(lstm_input, hidden)

            # Project to frame
            frame_logits = self.output_projection(lstm_out.squeeze(1))

            # Sample frame (treat as continuous output)
            current_frame = torch.tanh(frame_logits)  # Bound to [-1, 1]

            # Compute log prob (simplified)
            frame_log_prob = -0.5 * (frame_logits ** 2).sum(dim=-1)

            generated_frames.append(current_frame)
            log_probs.append(frame_log_prob)

        # Stack results
        generated_frames = torch.stack(generated_frames, dim=1)  # [batch, num_frames, frame_size]
        log_probs = torch.stack(log_probs, dim=1)  # [batch, num_frames]

        # Compute values
        values = self.value_net(context)  # [batch, 1]

        return generated_frames, log_probs, values