File size: 4,317 Bytes
c3efd49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""Configuration management utilities."""
from dataclasses import dataclass, field, asdict
from typing import Optional, Dict, Any
import yaml
from pathlib import Path


@dataclass
class ModelConfig:
    """Model configuration."""
    name: str = "facebook/wav2vec2-base"
    device: str = "cuda"
    checkpoint: Optional[str] = None


@dataclass
class RLConfig:
    """Reinforcement learning configuration."""
    algorithm: str = "ppo"
    learning_rate: float = 3.0e-4
    batch_size: int = 32
    num_episodes: int = 1000
    episode_length: int = 100
    gamma: float = 0.99
    clip_epsilon: float = 0.2  # PPO specific
    max_grad_norm: float = 1.0


@dataclass
class DataConfig:
    """Data configuration."""
    dataset_path: str = "data/processed"
    train_split: float = 0.7
    val_split: float = 0.15
    test_split: float = 0.15
    sample_rate: int = 16000


@dataclass
class CurriculumConfig:
    """Curriculum learning configuration."""
    enabled: bool = True
    levels: int = 5
    advancement_threshold: float = 0.8


@dataclass
class OptimizationConfig:
    """Optimization configuration."""
    mixed_precision: bool = True
    gradient_checkpointing: bool = False


@dataclass
class CheckpointConfig:
    """Checkpointing configuration."""
    interval: int = 50  # episodes
    save_dir: str = "checkpoints"
    keep_last_n: int = 5


@dataclass
class MonitoringConfig:
    """Monitoring configuration."""
    log_interval: int = 10
    visualization_interval: int = 50
    tensorboard_dir: str = "runs"


@dataclass
class ReproducibilityConfig:
    """Reproducibility configuration."""
    random_seed: int = 42


@dataclass
class TrainingConfig:
    """Complete training configuration."""
    model: ModelConfig = field(default_factory=ModelConfig)
    rl: RLConfig = field(default_factory=RLConfig)
    data: DataConfig = field(default_factory=DataConfig)
    curriculum: CurriculumConfig = field(default_factory=CurriculumConfig)
    optimization: OptimizationConfig = field(default_factory=OptimizationConfig)
    checkpointing: CheckpointConfig = field(default_factory=CheckpointConfig)
    monitoring: MonitoringConfig = field(default_factory=MonitoringConfig)
    reproducibility: ReproducibilityConfig = field(default_factory=ReproducibilityConfig)

    @classmethod
    def from_yaml(cls, path: str) -> "TrainingConfig":
        """Load configuration from YAML file."""
        with open(path, 'r') as f:
            config_dict = yaml.safe_load(f)
        
        return cls(
            model=ModelConfig(**config_dict.get('model', {})),
            rl=RLConfig(**config_dict.get('rl', {})),
            data=DataConfig(**config_dict.get('data', {})),
            curriculum=CurriculumConfig(**config_dict.get('curriculum', {})),
            optimization=OptimizationConfig(**config_dict.get('optimization', {})),
            checkpointing=CheckpointConfig(**config_dict.get('checkpointing', {})),
            monitoring=MonitoringConfig(**config_dict.get('monitoring', {})),
            reproducibility=ReproducibilityConfig(**config_dict.get('reproducibility', {}))
        )
    
    def to_yaml(self, path: str) -> None:
        """Save configuration to YAML file."""
        config_dict = {
            'model': asdict(self.model),
            'rl': asdict(self.rl),
            'data': asdict(self.data),
            'curriculum': asdict(self.curriculum),
            'optimization': asdict(self.optimization),
            'checkpointing': asdict(self.checkpointing),
            'monitoring': asdict(self.monitoring),
            'reproducibility': asdict(self.reproducibility)
        }
        
        Path(path).parent.mkdir(parents=True, exist_ok=True)
        with open(path, 'w') as f:
            yaml.dump(config_dict, f, default_flow_style=False)
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert configuration to dictionary."""
        return {
            'model': asdict(self.model),
            'rl': asdict(self.rl),
            'data': asdict(self.data),
            'curriculum': asdict(self.curriculum),
            'optimization': asdict(self.optimization),
            'checkpointing': asdict(self.checkpointing),
            'monitoring': asdict(self.monitoring),
            'reproducibility': asdict(self.reproducibility)
        }