Spaces:
Runtime error
Runtime error
Fix: Gradio Progress and launch parameters for HF deployment
Browse files
app.py
CHANGED
|
@@ -69,7 +69,7 @@ class VoiceModelTrainer:
|
|
| 69 |
learning_rate: float,
|
| 70 |
algorithm: str,
|
| 71 |
batch_size: int,
|
| 72 |
-
progress=
|
| 73 |
) -> Tuple[str, str, str]:
|
| 74 |
"""Train the model with RL."""
|
| 75 |
if self.training_active:
|
|
@@ -77,7 +77,8 @@ class VoiceModelTrainer:
|
|
| 77 |
|
| 78 |
try:
|
| 79 |
self.training_active = True
|
| 80 |
-
progress
|
|
|
|
| 81 |
|
| 82 |
# Create output directory
|
| 83 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
@@ -85,18 +86,21 @@ class VoiceModelTrainer:
|
|
| 85 |
run_dir.mkdir(parents=True, exist_ok=True)
|
| 86 |
|
| 87 |
# Load model
|
| 88 |
-
progress
|
|
|
|
| 89 |
model = VoiceModelWrapper(model_name=model_name, device=self.device)
|
| 90 |
model.load_model()
|
| 91 |
|
| 92 |
# Setup data (use sample data for demo)
|
| 93 |
-
progress
|
|
|
|
| 94 |
data_manager = DataManager()
|
| 95 |
# For HF Space, we'll use a small demo dataset
|
| 96 |
# In production, this would load from user-provided data
|
| 97 |
|
| 98 |
# Create algorithm
|
| 99 |
-
progress
|
|
|
|
| 100 |
rl_model = model.get_rl_model() if hasattr(model, 'get_rl_model') else model.model
|
| 101 |
|
| 102 |
if algorithm.lower() == 'ppo':
|
|
@@ -122,7 +126,8 @@ class VoiceModelTrainer:
|
|
| 122 |
metrics_tracker = MetricsTracker(log_dir=str(run_dir / 'logs'))
|
| 123 |
visualizer = Visualizer(output_dir=str(run_dir / 'visualizations'))
|
| 124 |
|
| 125 |
-
progress
|
|
|
|
| 126 |
|
| 127 |
# For demo purposes, simulate training
|
| 128 |
# In production, you'd run actual training here
|
|
@@ -144,8 +149,9 @@ class VoiceModelTrainer:
|
|
| 144 |
|
| 145 |
# Simulate training progress
|
| 146 |
for i in range(num_episodes):
|
| 147 |
-
progress
|
| 148 |
-
|
|
|
|
| 149 |
|
| 150 |
# Save checkpoint
|
| 151 |
checkpoint_dir = run_dir / 'checkpoints'
|
|
@@ -158,7 +164,8 @@ class VoiceModelTrainer:
|
|
| 158 |
'episode': num_episodes
|
| 159 |
}, checkpoint_path)
|
| 160 |
|
| 161 |
-
progress
|
|
|
|
| 162 |
|
| 163 |
self.models['trained'] = model
|
| 164 |
|
|
@@ -182,14 +189,15 @@ class VoiceModelTrainer:
|
|
| 182 |
self,
|
| 183 |
checkpoint_path: str,
|
| 184 |
sample_audio: str,
|
| 185 |
-
progress=
|
| 186 |
) -> Tuple[str, str, str]:
|
| 187 |
"""Generate audio comparison."""
|
| 188 |
try:
|
| 189 |
if not checkpoint_path or not Path(checkpoint_path).exists():
|
| 190 |
return None, None, "❌ No checkpoint available"
|
| 191 |
|
| 192 |
-
progress
|
|
|
|
| 193 |
|
| 194 |
# For demo, return the input audio
|
| 195 |
# In production, process through models
|
|
@@ -445,8 +453,4 @@ def create_app():
|
|
| 445 |
|
| 446 |
if __name__ == "__main__":
|
| 447 |
app = create_app()
|
| 448 |
-
app.launch(
|
| 449 |
-
server_name="0.0.0.0",
|
| 450 |
-
server_port=7860,
|
| 451 |
-
share=False
|
| 452 |
-
)
|
|
|
|
| 69 |
learning_rate: float,
|
| 70 |
algorithm: str,
|
| 71 |
batch_size: int,
|
| 72 |
+
progress=None
|
| 73 |
) -> Tuple[str, str, str]:
|
| 74 |
"""Train the model with RL."""
|
| 75 |
if self.training_active:
|
|
|
|
| 77 |
|
| 78 |
try:
|
| 79 |
self.training_active = True
|
| 80 |
+
if progress:
|
| 81 |
+
progress(0, desc="Initializing training...")
|
| 82 |
|
| 83 |
# Create output directory
|
| 84 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
|
| 86 |
run_dir.mkdir(parents=True, exist_ok=True)
|
| 87 |
|
| 88 |
# Load model
|
| 89 |
+
if progress:
|
| 90 |
+
progress(0.1, desc="Loading model...")
|
| 91 |
model = VoiceModelWrapper(model_name=model_name, device=self.device)
|
| 92 |
model.load_model()
|
| 93 |
|
| 94 |
# Setup data (use sample data for demo)
|
| 95 |
+
if progress:
|
| 96 |
+
progress(0.2, desc="Preparing data...")
|
| 97 |
data_manager = DataManager()
|
| 98 |
# For HF Space, we'll use a small demo dataset
|
| 99 |
# In production, this would load from user-provided data
|
| 100 |
|
| 101 |
# Create algorithm
|
| 102 |
+
if progress:
|
| 103 |
+
progress(0.3, desc=f"Initializing {algorithm.upper()} algorithm...")
|
| 104 |
rl_model = model.get_rl_model() if hasattr(model, 'get_rl_model') else model.model
|
| 105 |
|
| 106 |
if algorithm.lower() == 'ppo':
|
|
|
|
| 126 |
metrics_tracker = MetricsTracker(log_dir=str(run_dir / 'logs'))
|
| 127 |
visualizer = Visualizer(output_dir=str(run_dir / 'visualizations'))
|
| 128 |
|
| 129 |
+
if progress:
|
| 130 |
+
progress(0.4, desc="Starting training...")
|
| 131 |
|
| 132 |
# For demo purposes, simulate training
|
| 133 |
# In production, you'd run actual training here
|
|
|
|
| 149 |
|
| 150 |
# Simulate training progress
|
| 151 |
for i in range(num_episodes):
|
| 152 |
+
if progress:
|
| 153 |
+
progress((0.4 + (i / num_episodes) * 0.5),
|
| 154 |
+
desc=f"Training episode {i+1}/{num_episodes}")
|
| 155 |
|
| 156 |
# Save checkpoint
|
| 157 |
checkpoint_dir = run_dir / 'checkpoints'
|
|
|
|
| 164 |
'episode': num_episodes
|
| 165 |
}, checkpoint_path)
|
| 166 |
|
| 167 |
+
if progress:
|
| 168 |
+
progress(1.0, desc="Training complete!")
|
| 169 |
|
| 170 |
self.models['trained'] = model
|
| 171 |
|
|
|
|
| 189 |
self,
|
| 190 |
checkpoint_path: str,
|
| 191 |
sample_audio: str,
|
| 192 |
+
progress=None
|
| 193 |
) -> Tuple[str, str, str]:
|
| 194 |
"""Generate audio comparison."""
|
| 195 |
try:
|
| 196 |
if not checkpoint_path or not Path(checkpoint_path).exists():
|
| 197 |
return None, None, "❌ No checkpoint available"
|
| 198 |
|
| 199 |
+
if progress:
|
| 200 |
+
progress(0, desc="Loading models...")
|
| 201 |
|
| 202 |
# For demo, return the input audio
|
| 203 |
# In production, process through models
|
|
|
|
| 453 |
|
| 454 |
if __name__ == "__main__":
|
| 455 |
app = create_app()
|
| 456 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|