"""Metrics tracking for training monitoring.""" import torch import numpy as np from typing import Dict, Any, List, Optional from collections import defaultdict import logging import json from pathlib import Path logger = logging.getLogger(__name__) class MetricsTracker: """ Tracks and aggregates training metrics. Logs rewards, losses, learning rates, GPU memory, and custom metrics. """ def __init__(self, log_dir: str = "logs"): """ Initialize metrics tracker. Args: log_dir: Directory to save metric logs """ self.log_dir = Path(log_dir) self.log_dir.mkdir(parents=True, exist_ok=True) # Storage for metrics self.metrics = defaultdict(list) self.step_counter = 0 logger.info(f"MetricsTracker initialized: log_dir={log_dir}") def log_metric( self, name: str, value: float, step: Optional[int] = None ) -> None: """ Log a single metric value. Args: name: Metric name value: Metric value step: Optional step number (uses internal counter if not provided) """ if step is None: step = self.step_counter self.metrics[name].append({ 'step': step, 'value': float(value) }) def log_metrics( self, metrics: Dict[str, float], step: Optional[int] = None ) -> None: """ Log multiple metrics at once. Args: metrics: Dictionary of metric names and values step: Optional step number """ if step is None: step = self.step_counter for name, value in metrics.items(): self.log_metric(name, value, step) self.step_counter += 1 def log_training_metrics( self, episode: int, reward: float, loss: float, learning_rate: float, **kwargs ) -> None: """ Log standard training metrics. Args: episode: Episode number reward: Episode reward loss: Training loss learning_rate: Current learning rate **kwargs: Additional metrics """ metrics = { 'reward': reward, 'loss': loss, 'learning_rate': learning_rate, **kwargs } self.log_metrics(metrics, step=episode) def log_gpu_memory(self, step: Optional[int] = None) -> None: """ Log GPU memory usage. Args: step: Optional step number """ if torch.cuda.is_available(): allocated = torch.cuda.memory_allocated() / (1024 ** 2) # MB reserved = torch.cuda.memory_reserved() / (1024 ** 2) # MB self.log_metric('gpu_memory_allocated_mb', allocated, step) self.log_metric('gpu_memory_reserved_mb', reserved, step) def get_metric(self, name: str) -> List[Dict[str, Any]]: """ Get all values for a specific metric. Args: name: Metric name Returns: List of {step, value} dictionaries """ return self.metrics.get(name, []) def get_latest_value(self, name: str) -> Optional[float]: """ Get the most recent value for a metric. Args: name: Metric name Returns: Latest value or None """ values = self.metrics.get(name, []) if values: return values[-1]['value'] return None def get_metric_statistics(self, name: str) -> Dict[str, float]: """ Get statistics for a metric. Args: name: Metric name Returns: Dictionary with mean, std, min, max """ values = [entry['value'] for entry in self.metrics.get(name, [])] if not values: return { 'count': 0, 'mean': 0.0, 'std': 0.0, 'min': 0.0, 'max': 0.0 } return { 'count': len(values), 'mean': float(np.mean(values)), 'std': float(np.std(values)), 'min': float(np.min(values)), 'max': float(np.max(values)) } def get_all_metrics(self) -> Dict[str, List[Dict[str, Any]]]: """ Get all tracked metrics. Returns: Dictionary of all metrics """ return dict(self.metrics) def get_metric_names(self) -> List[str]: """ Get names of all tracked metrics. Returns: List of metric names """ return list(self.metrics.keys()) def aggregate_metrics( self, window_size: int = 10 ) -> Dict[str, Dict[str, float]]: """ Aggregate metrics over a sliding window. Args: window_size: Size of sliding window Returns: Dictionary of aggregated metrics """ aggregated = {} for name, values in self.metrics.items(): if len(values) >= window_size: recent_values = [v['value'] for v in values[-window_size:]] aggregated[name] = { 'mean': float(np.mean(recent_values)), 'std': float(np.std(recent_values)), 'min': float(np.min(recent_values)), 'max': float(np.max(recent_values)) } return aggregated def save_metrics(self, filename: str = "metrics.json") -> None: """ Save metrics to JSON file. Args: filename: Output filename """ output_path = self.log_dir / filename with open(output_path, 'w') as f: json.dump(dict(self.metrics), f, indent=2) logger.info(f"Metrics saved to {output_path}") def load_metrics(self, filename: str = "metrics.json") -> None: """ Load metrics from JSON file. Args: filename: Input filename """ input_path = self.log_dir / filename if not input_path.exists(): raise FileNotFoundError(f"Metrics file not found: {input_path}") with open(input_path, 'r') as f: loaded_metrics = json.load(f) self.metrics = defaultdict(list, loaded_metrics) logger.info(f"Metrics loaded from {input_path}") def reset(self) -> None: """Reset all metrics.""" self.metrics.clear() self.step_counter = 0 logger.info("Metrics reset") def summary(self) -> Dict[str, Any]: """ Generate summary of all metrics. Returns: Summary dictionary """ summary = { 'total_steps': self.step_counter, 'num_metrics': len(self.metrics), 'metrics': {} } for name in self.metrics.keys(): summary['metrics'][name] = self.get_metric_statistics(name) return summary