Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import time
|
| 3 |
+
import random
|
| 4 |
+
from diffusers import StableDiffusionPipeline
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image, ImageFilter, ImageStat
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
# ========== AGENTES DEFINIDOS DIRECTAMENTE EN EL ARCHIVO ==========
|
| 10 |
+
|
| 11 |
+
class LightingAgent:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
print("✅ LightingAgent inicializado")
|
| 14 |
+
self.lighting_styles = {
|
| 15 |
+
"cinematic": "dramatic lighting, cinematic style, film noir, high contrast, volumetric light",
|
| 16 |
+
"natural": "natural sunlight, soft light, golden hour, ambient light, realistic lighting",
|
| 17 |
+
"studio": "studio lighting, professional photo, softbox, beauty dish, even lighting",
|
| 18 |
+
"moody": "moody lighting, low key, chiaroscuro, atmospheric, dramatic shadows"
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
def optimize_lighting(self, base_prompt, lighting_style):
|
| 22 |
+
lighting_terms = self.lighting_styles.get(lighting_style, self.lighting_styles["natural"])
|
| 23 |
+
optimized_prompt = f"{base_prompt}, {lighting_terms}"
|
| 24 |
+
return optimized_prompt, lighting_style
|
| 25 |
+
|
| 26 |
+
class TextureAgent:
|
| 27 |
+
def __init__(self):
|
| 28 |
+
print("✅ TextureAgent inicializado")
|
| 29 |
+
self.texture_library = {
|
| 30 |
+
"skin": [
|
| 31 |
+
"detailed skin texture", "natural skin pores", "skin microdetails",
|
| 32 |
+
"subsurface scattering", "realistic skin", "skin imperfections"
|
| 33 |
+
],
|
| 34 |
+
"hair": [
|
| 35 |
+
"individual hair strands", "hair texture", "realistic hair flow",
|
| 36 |
+
"hair details", "natural hair"
|
| 37 |
+
]
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
def enhance_textures(self, prompt):
|
| 41 |
+
enhanced_prompt = prompt
|
| 42 |
+
skin_terms = random.sample(self.texture_library["skin"], 2)
|
| 43 |
+
enhanced_prompt += f", {', '.join(skin_terms)}"
|
| 44 |
+
|
| 45 |
+
if "8k" not in enhanced_prompt.lower():
|
| 46 |
+
enhanced_prompt += ", detailed texture, high quality details"
|
| 47 |
+
|
| 48 |
+
return enhanced_prompt
|
| 49 |
+
|
| 50 |
+
class CompositionAgent:
|
| 51 |
+
def __init__(self):
|
| 52 |
+
print("✅ CompositionAgent inicializado")
|
| 53 |
+
self.composition_rules = {
|
| 54 |
+
"portrait": [
|
| 55 |
+
"head and shoulders composition", "rule of thirds", "vertical portrait",
|
| 56 |
+
"close-up shot", "professional portrait composition"
|
| 57 |
+
],
|
| 58 |
+
"full_body": [
|
| 59 |
+
"full body portrait", "vertical composition", "environmental portrait",
|
| 60 |
+
"full figure", "standing pose vertical"
|
| 61 |
+
]
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
def optimize_composition(self, prompt, composition_type="portrait"):
|
| 65 |
+
composition_terms = self.composition_rules.get(composition_type, self.composition_rules["portrait"])
|
| 66 |
+
selected_terms = composition_terms[:2]
|
| 67 |
+
optimized_prompt = f"{prompt}, {', '.join(selected_terms)}, vertical format 9:16"
|
| 68 |
+
return optimized_prompt, composition_type
|
| 69 |
+
|
| 70 |
+
class StyleTransferAgent:
|
| 71 |
+
def __init__(self):
|
| 72 |
+
print("✅ StyleTransferAgent inicializado")
|
| 73 |
+
self.hyperreal_styles = {
|
| 74 |
+
"photorealistic": {
|
| 75 |
+
"terms": "photorealistic, 8k resolution, professional photography, highly detailed",
|
| 76 |
+
"description": "Máximo realismo fotográfico"
|
| 77 |
+
},
|
| 78 |
+
"cinematic": {
|
| 79 |
+
"terms": "cinematic, movie still, film photography, dramatic, cinematic style",
|
| 80 |
+
"description": "Estilo de película o cine"
|
| 81 |
+
}
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
def apply_style(self, prompt, style_name="photorealistic"):
|
| 85 |
+
style_data = self.hyperreal_styles.get(style_name, self.hyperreal_styles["photorealistic"])
|
| 86 |
+
styled_prompt = f"{prompt}, {style_data['terms']}"
|
| 87 |
+
return styled_prompt, style_name, style_data["description"]
|
| 88 |
+
|
| 89 |
+
class QualityControlAgent:
|
| 90 |
+
def __init__(self):
|
| 91 |
+
print("✅ QualityControlAgent inicializado")
|
| 92 |
+
|
| 93 |
+
def analyze_image_quality(self, image):
|
| 94 |
+
if not isinstance(image, Image.Image):
|
| 95 |
+
return {"score": 0.5, "feedback": ["No se pudo analizar la imagen"]}
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
metrics = {
|
| 99 |
+
"contrast": self._analyze_contrast(image),
|
| 100 |
+
"sharpness": self._analyze_sharpness(image),
|
| 101 |
+
"brightness": self._analyze_brightness(image)
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
overall_score = np.mean(list(metrics.values()))
|
| 105 |
+
|
| 106 |
+
return {
|
| 107 |
+
"score": round(overall_score, 2),
|
| 108 |
+
"metrics": metrics,
|
| 109 |
+
"feedback": self._generate_feedback(metrics)
|
| 110 |
+
}
|
| 111 |
+
except Exception as e:
|
| 112 |
+
return {"score": 0.5, "feedback": ["Error en análisis"]}
|
| 113 |
+
|
| 114 |
+
def _analyze_contrast(self, image):
|
| 115 |
+
stat = ImageStat.Stat(image)
|
| 116 |
+
if len(stat.stddev) == 3:
|
| 117 |
+
return np.mean(stat.stddev) / 255.0
|
| 118 |
+
return 0.5
|
| 119 |
+
|
| 120 |
+
def _analyze_sharpness(self, image):
|
| 121 |
+
small_img = image.resize((100, 100))
|
| 122 |
+
edges = small_img.filter(ImageFilter.FIND_EDGES)
|
| 123 |
+
stat = ImageStat.Stat(edges)
|
| 124 |
+
return min(np.mean(stat.stddev) / 255.0, 1.0)
|
| 125 |
+
|
| 126 |
+
def _analyze_brightness(self, image):
|
| 127 |
+
stat = ImageStat.Stat(image)
|
| 128 |
+
if len(stat.mean) == 3:
|
| 129 |
+
brightness = np.mean(stat.mean) / 255.0
|
| 130 |
+
return 1.0 - abs(brightness - 0.5) * 2
|
| 131 |
+
return 0.5
|
| 132 |
+
|
| 133 |
+
def _generate_feedback(self, metrics):
|
| 134 |
+
feedback = []
|
| 135 |
+
if metrics.get("contrast", 0) < 0.3:
|
| 136 |
+
feedback.append("Puedes mejorar el contraste")
|
| 137 |
+
if metrics.get("sharpness", 0) < 0.4:
|
| 138 |
+
feedback.append("La imagen está algo borrosa")
|
| 139 |
+
return feedback if feedback else ["¡Buena calidad de imagen!"]
|
| 140 |
+
|
| 141 |
+
class EmotionAgent:
|
| 142 |
+
def __init__(self):
|
| 143 |
+
self.emotion_profiles = {
|
| 144 |
+
"subtle_smile": "hint of smile, gentle eye crinkles, relaxed forehead, natural expression",
|
| 145 |
+
"contemplative": "distant gaze, soft frown, pensive expression, thoughtful look",
|
| 146 |
+
"joyful_laugh": "crow's feet, teeth slightly visible, raised cheeks, genuine smile",
|
| 147 |
+
"serious": "neutral expression, focused gaze, composed demeanor, professional"
|
| 148 |
+
}
|
| 149 |
+
print("✅ EmotionAgent inicializado")
|
| 150 |
+
|
| 151 |
+
def add_emotion_cues(self, base_prompt, emotion):
|
| 152 |
+
emotion_cues = self.emotion_profiles.get(emotion, "natural expression")
|
| 153 |
+
return f"{base_prompt}, {emotion_cues}"
|
| 154 |
+
|
| 155 |
+
def get_available_emotions(self):
|
| 156 |
+
return list(self.emotion_profiles.keys())
|
| 157 |
+
|
| 158 |
+
class ImageGenerator:
|
| 159 |
+
def __init__(self):
|
| 160 |
+
print("🔄 Cargando generador de imágenes...")
|
| 161 |
+
self.device = "cpu"
|
| 162 |
+
self.pipeline = None
|
| 163 |
+
self.model_id = "runwayml/stable-diffusion-v1-5"
|
| 164 |
+
self.load_model()
|
| 165 |
+
|
| 166 |
+
def load_model(self):
|
| 167 |
+
try:
|
| 168 |
+
print("📥 Descargando modelo Stable Diffusion...")
|
| 169 |
+
|
| 170 |
+
self.pipeline = StableDiffusionPipeline.from_pretrained(
|
| 171 |
+
self.model_id,
|
| 172 |
+
torch_dtype=torch.float32,
|
| 173 |
+
use_safetensors=True,
|
| 174 |
+
safety_checker=None,
|
| 175 |
+
requires_safety_checker=False,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
self.pipeline = self.pipeline.to(self.device)
|
| 179 |
+
self.pipeline.enable_attention_slicing()
|
| 180 |
+
|
| 181 |
+
print("✅ Generador de imágenes cargado")
|
| 182 |
+
except Exception as e:
|
| 183 |
+
print(f"❌ Error cargando el generador: {e}")
|
| 184 |
+
raise e
|
| 185 |
+
|
| 186 |
+
def generate_image(self, prompt, negative_prompt="", width=512, height=768):
|
| 187 |
+
print(f"🎨 Generando: {prompt[:80]}...")
|
| 188 |
+
start_time = time.time()
|
| 189 |
+
|
| 190 |
+
try:
|
| 191 |
+
with torch.no_grad():
|
| 192 |
+
result = self.pipeline(
|
| 193 |
+
prompt=prompt,
|
| 194 |
+
negative_prompt=negative_prompt,
|
| 195 |
+
width=width,
|
| 196 |
+
height=height,
|
| 197 |
+
num_inference_steps=20,
|
| 198 |
+
guidance_scale=7.5,
|
| 199 |
+
generator=torch.manual_seed(42)
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
image = result.images[0]
|
| 203 |
+
generation_time = time.time() - start_time
|
| 204 |
+
print(f"✅ Imagen generada en {generation_time:.1f}s")
|
| 205 |
+
return image
|
| 206 |
+
|
| 207 |
+
except Exception as e:
|
| 208 |
+
print(f"❌ Error generando imagen: {e}")
|
| 209 |
+
return Image.new('RGB', (width, height), color='gray')
|
| 210 |
+
|
| 211 |
+
# ========== APLICACIÓN PRINCIPAL ==========
|
| 212 |
+
|
| 213 |
+
class HyperRealStudio916:
|
| 214 |
+
def __init__(self):
|
| 215 |
+
print("🚀 Iniciando HyperReal Studio 916...")
|
| 216 |
+
|
| 217 |
+
# Inicializar todos los agentes
|
| 218 |
+
self.lighting_agent = LightingAgent()
|
| 219 |
+
self.texture_agent = TextureAgent()
|
| 220 |
+
self.composition_agent = CompositionAgent()
|
| 221 |
+
self.style_agent = StyleTransferAgent()
|
| 222 |
+
self.quality_agent = QualityControlAgent()
|
| 223 |
+
self.emotion_agent = EmotionAgent()
|
| 224 |
+
self.image_generator = ImageGenerator()
|
| 225 |
+
|
| 226 |
+
print("✅ ¡Aplicación lista!")
|
| 227 |
+
|
| 228 |
+
def generate_portrait(self, description, lighting_style, emotion, composition_type, enhance_texture, style_preset):
|
| 229 |
+
print(f"🎨 Iniciando generación...")
|
| 230 |
+
start_time = time.time()
|
| 231 |
+
|
| 232 |
+
# Negative prompt
|
| 233 |
+
negative_prompt = "cartoon, 3d, render, anime, fake, plastic, doll, deformed, blurry"
|
| 234 |
+
|
| 235 |
+
# Aplicar agentes
|
| 236 |
+
current_prompt = description
|
| 237 |
+
|
| 238 |
+
# Agente de emociones
|
| 239 |
+
current_prompt = self.emotion_agent.add_emotion_cues(current_prompt, emotion)
|
| 240 |
+
|
| 241 |
+
# Agente de iluminación
|
| 242 |
+
current_prompt, _ = self.lighting_agent.optimize_lighting(current_prompt, lighting_style)
|
| 243 |
+
|
| 244 |
+
# Agente de composición
|
| 245 |
+
current_prompt, _ = self.composition_agent.optimize_composition(current_prompt, composition_type)
|
| 246 |
+
|
| 247 |
+
# Agente de estilo
|
| 248 |
+
current_prompt, _, _ = self.style_agent.apply_style(current_prompt, style_preset)
|
| 249 |
+
|
| 250 |
+
# Agente de texturas
|
| 251 |
+
if enhance_texture:
|
| 252 |
+
current_prompt = self.texture_agent.enhance_textures(current_prompt)
|
| 253 |
+
|
| 254 |
+
# Generar imagen
|
| 255 |
+
image = self.image_generator.generate_image(
|
| 256 |
+
prompt=current_prompt,
|
| 257 |
+
negative_prompt=negative_prompt,
|
| 258 |
+
width=512,
|
| 259 |
+
height=768
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Analizar calidad
|
| 263 |
+
quality_analysis = self.quality_agent.analyze_image_quality(image)
|
| 264 |
+
|
| 265 |
+
total_time = time.time() - start_time
|
| 266 |
+
print(f"✅ Proceso completado en {total_time:.1f}s")
|
| 267 |
+
|
| 268 |
+
return image, quality_analysis['score'], current_prompt, quality_analysis
|
| 269 |
+
|
| 270 |
+
def create_interface():
|
| 271 |
+
studio = HyperRealStudio916()
|
| 272 |
+
|
| 273 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="HyperReal Studio 916") as demo:
|
| 274 |
+
gr.Markdown("""
|
| 275 |
+
# 🎨 HyperReal Studio 916
|
| 276 |
+
### Generador de Retratos Hiperrealistas
|
| 277 |
+
""")
|
| 278 |
+
|
| 279 |
+
with gr.Row():
|
| 280 |
+
with gr.Column(scale=1):
|
| 281 |
+
description = gr.Textbox(
|
| 282 |
+
label="📝 Descripción",
|
| 283 |
+
placeholder="Ej: mujer joven con cabello castaño, sonriendo...",
|
| 284 |
+
lines=3
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
lighting_style = gr.Dropdown(
|
| 288 |
+
choices=["cinematic", "natural", "studio", "moody"],
|
| 289 |
+
label="💡 Iluminación",
|
| 290 |
+
value="natural"
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
emotion = gr.Dropdown(
|
| 294 |
+
choices=studio.emotion_agent.get_available_emotions(),
|
| 295 |
+
label="😊 Emoción",
|
| 296 |
+
value="subtle_smile"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
composition_type = gr.Dropdown(
|
| 300 |
+
choices=["portrait", "full_body"],
|
| 301 |
+
label="📐 Composición",
|
| 302 |
+
value="portrait"
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
style_preset = gr.Dropdown(
|
| 306 |
+
choices=["photorealistic", "cinematic"],
|
| 307 |
+
label="🎨 Estilo",
|
| 308 |
+
value="photorealistic"
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
enhance_texture = gr.Checkbox(
|
| 312 |
+
label="🔍 Mejorar Texturas",
|
| 313 |
+
value=True
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
generate_btn = gr.Button("🎨 Generar Retrato", variant="primary")
|
| 317 |
+
|
| 318 |
+
with gr.Column(scale=2):
|
| 319 |
+
output_image = gr.Image(
|
| 320 |
+
label="🖼️ Retrato Generado",
|
| 321 |
+
format="png",
|
| 322 |
+
height=400
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
realism_score = gr.Number(
|
| 326 |
+
label="📊 Calidad",
|
| 327 |
+
precision=2
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
used_prompt = gr.Textbox(
|
| 331 |
+
label="📝 Prompt Utilizado",
|
| 332 |
+
lines=2
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
with gr.Accordion("📈 Análisis", open=False):
|
| 336 |
+
quality_analysis = gr.JSON(
|
| 337 |
+
label="Métricas"
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
gr.Examples(
|
| 341 |
+
examples=[
|
| 342 |
+
["mujer joven con cabello largo, sonriendo", "natural", "subtle_smile", "portrait", "photorealistic"],
|
| 343 |
+
["hombre maduro con barba, serio", "cinematic", "serious", "portrait", "cinematic"]
|
| 344 |
+
],
|
| 345 |
+
inputs=[description, lighting_style, emotion, composition_type, style_preset],
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
generate_btn.click(
|
| 349 |
+
fn=studio.generate_portrait,
|
| 350 |
+
inputs=[description, lighting_style, emotion, composition_type, enhance_texture, style_preset],
|
| 351 |
+
outputs=[output_image, realism_score, used_prompt, quality_analysis]
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
return demo
|
| 355 |
+
|
| 356 |
+
if __name__ == "__main__":
|
| 357 |
+
demo = create_interface()
|
| 358 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|