Update app.py
Browse files
app.py
CHANGED
|
@@ -1,212 +1,142 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
| 3 |
import random
|
| 4 |
-
from diffusers import StableDiffusionPipeline
|
| 5 |
-
import torch
|
| 6 |
from PIL import Image, ImageFilter, ImageStat
|
| 7 |
import numpy as np
|
| 8 |
|
| 9 |
-
# ========== AGENTES
|
| 10 |
|
| 11 |
class LightingAgent:
|
| 12 |
def __init__(self):
|
| 13 |
-
print("✅ LightingAgent inicializado")
|
| 14 |
self.lighting_styles = {
|
| 15 |
-
"cinematic": "dramatic lighting, cinematic style,
|
| 16 |
-
"natural": "natural sunlight, soft light, golden hour,
|
| 17 |
-
"studio": "studio lighting, professional photo, softbox
|
| 18 |
-
"moody": "moody lighting, low key, chiaroscuro, atmospheric, dramatic shadows"
|
| 19 |
}
|
| 20 |
|
| 21 |
def optimize_lighting(self, base_prompt, lighting_style):
|
| 22 |
-
lighting_terms = self.lighting_styles.get(lighting_style,
|
| 23 |
-
|
| 24 |
-
return optimized_prompt, lighting_style
|
| 25 |
|
| 26 |
class TextureAgent:
|
| 27 |
def __init__(self):
|
| 28 |
-
|
| 29 |
-
self.texture_library = {
|
| 30 |
-
"skin": [
|
| 31 |
-
"detailed skin texture", "natural skin pores", "skin microdetails",
|
| 32 |
-
"subsurface scattering", "realistic skin", "skin imperfections"
|
| 33 |
-
],
|
| 34 |
-
"hair": [
|
| 35 |
-
"individual hair strands", "hair texture", "realistic hair flow",
|
| 36 |
-
"hair details", "natural hair"
|
| 37 |
-
]
|
| 38 |
-
}
|
| 39 |
|
| 40 |
def enhance_textures(self, prompt):
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
enhanced_prompt += f", {', '.join(skin_terms)}"
|
| 44 |
-
|
| 45 |
-
if "8k" not in enhanced_prompt.lower():
|
| 46 |
-
enhanced_prompt += ", detailed texture, high quality details"
|
| 47 |
-
|
| 48 |
-
return enhanced_prompt
|
| 49 |
|
| 50 |
class CompositionAgent:
|
| 51 |
def __init__(self):
|
| 52 |
-
print("✅ CompositionAgent inicializado")
|
| 53 |
self.composition_rules = {
|
| 54 |
-
"portrait":
|
| 55 |
-
|
| 56 |
-
"close-up shot", "professional portrait composition"
|
| 57 |
-
],
|
| 58 |
-
"full_body": [
|
| 59 |
-
"full body portrait", "vertical composition", "environmental portrait",
|
| 60 |
-
"full figure", "standing pose vertical"
|
| 61 |
-
]
|
| 62 |
}
|
| 63 |
|
| 64 |
def optimize_composition(self, prompt, composition_type="portrait"):
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
optimized_prompt = f"{prompt}, {', '.join(selected_terms)}, vertical format 9:16"
|
| 68 |
-
return optimized_prompt, composition_type
|
| 69 |
|
| 70 |
class StyleTransferAgent:
|
| 71 |
def __init__(self):
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
"
|
| 75 |
-
"terms": "photorealistic, 8k resolution, professional photography, highly detailed",
|
| 76 |
-
"description": "Máximo realismo fotográfico"
|
| 77 |
-
},
|
| 78 |
-
"cinematic": {
|
| 79 |
-
"terms": "cinematic, movie still, film photography, dramatic, cinematic style",
|
| 80 |
-
"description": "Estilo de película o cine"
|
| 81 |
-
}
|
| 82 |
}
|
| 83 |
|
| 84 |
def apply_style(self, prompt, style_name="photorealistic"):
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
return styled_prompt, style_name, style_data["description"]
|
| 88 |
|
| 89 |
class QualityControlAgent:
|
| 90 |
-
def __init__(self):
|
| 91 |
-
print("✅ QualityControlAgent inicializado")
|
| 92 |
-
|
| 93 |
def analyze_image_quality(self, image):
|
| 94 |
-
if not isinstance(image, Image.Image):
|
| 95 |
-
return {"score": 0.5, "feedback": ["No se pudo analizar la imagen"]}
|
| 96 |
-
|
| 97 |
try:
|
| 98 |
-
|
| 99 |
-
"
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
|
| 106 |
return {
|
| 107 |
-
"score": round(
|
| 108 |
-
"metrics":
|
| 109 |
-
"feedback":
|
| 110 |
}
|
| 111 |
-
except
|
| 112 |
return {"score": 0.5, "feedback": ["Error en análisis"]}
|
| 113 |
-
|
| 114 |
-
def _analyze_contrast(self, image):
|
| 115 |
-
stat = ImageStat.Stat(image)
|
| 116 |
-
if len(stat.stddev) == 3:
|
| 117 |
-
return np.mean(stat.stddev) / 255.0
|
| 118 |
-
return 0.5
|
| 119 |
-
|
| 120 |
-
def _analyze_sharpness(self, image):
|
| 121 |
-
small_img = image.resize((100, 100))
|
| 122 |
-
edges = small_img.filter(ImageFilter.FIND_EDGES)
|
| 123 |
-
stat = ImageStat.Stat(edges)
|
| 124 |
-
return min(np.mean(stat.stddev) / 255.0, 1.0)
|
| 125 |
-
|
| 126 |
-
def _analyze_brightness(self, image):
|
| 127 |
-
stat = ImageStat.Stat(image)
|
| 128 |
-
if len(stat.mean) == 3:
|
| 129 |
-
brightness = np.mean(stat.mean) / 255.0
|
| 130 |
-
return 1.0 - abs(brightness - 0.5) * 2
|
| 131 |
-
return 0.5
|
| 132 |
-
|
| 133 |
-
def _generate_feedback(self, metrics):
|
| 134 |
-
feedback = []
|
| 135 |
-
if metrics.get("contrast", 0) < 0.3:
|
| 136 |
-
feedback.append("Puedes mejorar el contraste")
|
| 137 |
-
if metrics.get("sharpness", 0) < 0.4:
|
| 138 |
-
feedback.append("La imagen está algo borrosa")
|
| 139 |
-
return feedback if feedback else ["¡Buena calidad de imagen!"]
|
| 140 |
|
| 141 |
class EmotionAgent:
|
| 142 |
def __init__(self):
|
| 143 |
-
self.
|
| 144 |
-
"subtle_smile": "hint of smile,
|
| 145 |
-
"
|
| 146 |
-
"
|
| 147 |
-
"serious": "neutral expression, focused gaze, composed demeanor, professional"
|
| 148 |
}
|
| 149 |
-
print("✅ EmotionAgent inicializado")
|
| 150 |
|
| 151 |
def add_emotion_cues(self, base_prompt, emotion):
|
| 152 |
-
emotion_cues = self.
|
| 153 |
return f"{base_prompt}, {emotion_cues}"
|
| 154 |
|
| 155 |
def get_available_emotions(self):
|
| 156 |
-
return list(self.
|
|
|
|
|
|
|
| 157 |
|
| 158 |
class ImageGenerator:
|
| 159 |
def __init__(self):
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
self.pipeline = None
|
| 163 |
-
self.model_id = "runwayml/stable-diffusion-v1-5"
|
| 164 |
-
self.load_model()
|
| 165 |
-
|
| 166 |
-
def load_model(self):
|
| 167 |
-
try:
|
| 168 |
-
print("📥 Descargando modelo Stable Diffusion...")
|
| 169 |
-
|
| 170 |
-
self.pipeline = StableDiffusionPipeline.from_pretrained(
|
| 171 |
-
self.model_id,
|
| 172 |
-
torch_dtype=torch.float32,
|
| 173 |
-
use_safetensors=True,
|
| 174 |
-
safety_checker=None,
|
| 175 |
-
requires_safety_checker=False,
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
self.pipeline = self.pipeline.to(self.device)
|
| 179 |
-
self.pipeline.enable_attention_slicing()
|
| 180 |
-
|
| 181 |
-
print("✅ Generador de imágenes cargado")
|
| 182 |
-
except Exception as e:
|
| 183 |
-
print(f"❌ Error cargando el generador: {e}")
|
| 184 |
-
raise e
|
| 185 |
|
| 186 |
def generate_image(self, prompt, negative_prompt="", width=512, height=768):
|
| 187 |
-
print(f"🎨 Generando: {prompt[:
|
| 188 |
-
start_time = time.time()
|
| 189 |
|
| 190 |
try:
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
| 200 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
-
|
| 203 |
-
generation_time = time.time() - start_time
|
| 204 |
-
print(f"✅ Imagen generada en {generation_time:.1f}s")
|
| 205 |
-
return image
|
| 206 |
|
| 207 |
except Exception as e:
|
| 208 |
-
print(f"❌ Error
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
# ========== APLICACIÓN PRINCIPAL ==========
|
| 212 |
|
|
@@ -214,7 +144,6 @@ class HyperRealStudio916:
|
|
| 214 |
def __init__(self):
|
| 215 |
print("🚀 Iniciando HyperReal Studio 916...")
|
| 216 |
|
| 217 |
-
# Inicializar todos los agentes
|
| 218 |
self.lighting_agent = LightingAgent()
|
| 219 |
self.texture_agent = TextureAgent()
|
| 220 |
self.composition_agent = CompositionAgent()
|
|
@@ -226,121 +155,84 @@ class HyperRealStudio916:
|
|
| 226 |
print("✅ ¡Aplicación lista!")
|
| 227 |
|
| 228 |
def generate_portrait(self, description, lighting_style, emotion, composition_type, enhance_texture, style_preset):
|
| 229 |
-
print(
|
| 230 |
-
start_time = time.time()
|
| 231 |
|
| 232 |
-
|
| 233 |
-
negative_prompt = "cartoon, 3d, render, anime, fake, plastic, doll, deformed, blurry"
|
| 234 |
|
| 235 |
# Aplicar agentes
|
| 236 |
current_prompt = description
|
| 237 |
-
|
| 238 |
-
# Agente de emociones
|
| 239 |
current_prompt = self.emotion_agent.add_emotion_cues(current_prompt, emotion)
|
| 240 |
-
|
| 241 |
-
# Agente de iluminación
|
| 242 |
current_prompt, _ = self.lighting_agent.optimize_lighting(current_prompt, lighting_style)
|
| 243 |
-
|
| 244 |
-
# Agente de composición
|
| 245 |
current_prompt, _ = self.composition_agent.optimize_composition(current_prompt, composition_type)
|
| 246 |
-
|
| 247 |
-
# Agente de estilo
|
| 248 |
current_prompt, _, _ = self.style_agent.apply_style(current_prompt, style_preset)
|
| 249 |
|
| 250 |
-
# Agente de texturas
|
| 251 |
if enhance_texture:
|
| 252 |
current_prompt = self.texture_agent.enhance_textures(current_prompt)
|
| 253 |
|
| 254 |
# Generar imagen
|
| 255 |
-
image = self.image_generator.generate_image(
|
| 256 |
-
prompt=current_prompt,
|
| 257 |
-
negative_prompt=negative_prompt,
|
| 258 |
-
width=512,
|
| 259 |
-
height=768
|
| 260 |
-
)
|
| 261 |
|
| 262 |
# Analizar calidad
|
| 263 |
quality_analysis = self.quality_agent.analyze_image_quality(image)
|
| 264 |
|
| 265 |
-
|
| 266 |
-
print(f"✅ Proceso completado en {total_time:.1f}s")
|
| 267 |
|
| 268 |
return image, quality_analysis['score'], current_prompt, quality_analysis
|
| 269 |
|
| 270 |
def create_interface():
|
| 271 |
studio = HyperRealStudio916()
|
| 272 |
|
| 273 |
-
with gr.Blocks(
|
| 274 |
-
gr.Markdown(""
|
| 275 |
-
|
| 276 |
-
### Generador de Retratos Hiperrealistas
|
| 277 |
-
""")
|
| 278 |
|
| 279 |
with gr.Row():
|
| 280 |
-
with gr.Column(
|
| 281 |
description = gr.Textbox(
|
| 282 |
-
label="
|
| 283 |
-
placeholder="
|
| 284 |
-
lines=
|
| 285 |
)
|
| 286 |
|
| 287 |
lighting_style = gr.Dropdown(
|
| 288 |
-
choices=["cinematic", "natural", "studio"
|
| 289 |
-
label="
|
| 290 |
value="natural"
|
| 291 |
)
|
| 292 |
|
| 293 |
emotion = gr.Dropdown(
|
| 294 |
choices=studio.emotion_agent.get_available_emotions(),
|
| 295 |
-
label="
|
| 296 |
value="subtle_smile"
|
| 297 |
)
|
| 298 |
|
| 299 |
composition_type = gr.Dropdown(
|
| 300 |
choices=["portrait", "full_body"],
|
| 301 |
-
label="
|
| 302 |
value="portrait"
|
| 303 |
)
|
| 304 |
|
| 305 |
style_preset = gr.Dropdown(
|
| 306 |
choices=["photorealistic", "cinematic"],
|
| 307 |
-
label="
|
| 308 |
value="photorealistic"
|
| 309 |
)
|
| 310 |
|
| 311 |
-
enhance_texture = gr.Checkbox(
|
| 312 |
-
|
| 313 |
-
value=True
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
generate_btn = gr.Button("🎨 Generar Retrato", variant="primary")
|
| 317 |
|
| 318 |
-
with gr.Column(
|
| 319 |
-
output_image = gr.Image(
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
height=400
|
| 323 |
-
)
|
| 324 |
-
|
| 325 |
-
realism_score = gr.Number(
|
| 326 |
-
label="📊 Calidad",
|
| 327 |
-
precision=2
|
| 328 |
-
)
|
| 329 |
-
|
| 330 |
-
used_prompt = gr.Textbox(
|
| 331 |
-
label="📝 Prompt Utilizado",
|
| 332 |
-
lines=2
|
| 333 |
-
)
|
| 334 |
|
| 335 |
-
with gr.Accordion("
|
| 336 |
-
quality_analysis = gr.JSON(
|
| 337 |
-
label="Métricas"
|
| 338 |
-
)
|
| 339 |
|
| 340 |
gr.Examples(
|
| 341 |
examples=[
|
| 342 |
-
["mujer joven
|
| 343 |
-
["hombre
|
| 344 |
],
|
| 345 |
inputs=[description, lighting_style, emotion, composition_type, style_preset],
|
| 346 |
)
|
|
@@ -355,4 +247,4 @@ def create_interface():
|
|
| 355 |
|
| 356 |
if __name__ == "__main__":
|
| 357 |
demo = create_interface()
|
| 358 |
-
demo.launch(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
| 3 |
import random
|
|
|
|
|
|
|
| 4 |
from PIL import Image, ImageFilter, ImageStat
|
| 5 |
import numpy as np
|
| 6 |
|
| 7 |
+
# ========== AGENTES SIMPLIFICADOS ==========
|
| 8 |
|
| 9 |
class LightingAgent:
|
| 10 |
def __init__(self):
|
|
|
|
| 11 |
self.lighting_styles = {
|
| 12 |
+
"cinematic": "dramatic lighting, cinematic style, high contrast",
|
| 13 |
+
"natural": "natural sunlight, soft light, golden hour",
|
| 14 |
+
"studio": "studio lighting, professional photo, softbox"
|
|
|
|
| 15 |
}
|
| 16 |
|
| 17 |
def optimize_lighting(self, base_prompt, lighting_style):
|
| 18 |
+
lighting_terms = self.lighting_styles.get(lighting_style, "professional lighting")
|
| 19 |
+
return f"{base_prompt}, {lighting_terms}", lighting_style
|
|
|
|
| 20 |
|
| 21 |
class TextureAgent:
|
| 22 |
def __init__(self):
|
| 23 |
+
self.texture_terms = ["detailed skin texture", "natural skin pores", "realistic skin"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def enhance_textures(self, prompt):
|
| 26 |
+
texture = random.choice(self.texture_terms)
|
| 27 |
+
return f"{prompt}, {texture}, high quality details"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
class CompositionAgent:
|
| 30 |
def __init__(self):
|
|
|
|
| 31 |
self.composition_rules = {
|
| 32 |
+
"portrait": "vertical portrait, head and shoulders composition",
|
| 33 |
+
"full_body": "full body portrait, vertical composition"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
}
|
| 35 |
|
| 36 |
def optimize_composition(self, prompt, composition_type="portrait"):
|
| 37 |
+
composition = self.composition_rules.get(composition_type, "vertical portrait")
|
| 38 |
+
return f"{prompt}, {composition}, 9:16 format", composition_type
|
|
|
|
|
|
|
| 39 |
|
| 40 |
class StyleTransferAgent:
|
| 41 |
def __init__(self):
|
| 42 |
+
self.styles = {
|
| 43 |
+
"photorealistic": "photorealistic, professional photography",
|
| 44 |
+
"cinematic": "cinematic, movie style, dramatic"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
}
|
| 46 |
|
| 47 |
def apply_style(self, prompt, style_name="photorealistic"):
|
| 48 |
+
style = self.styles.get(style_name, "photorealistic")
|
| 49 |
+
return f"{prompt}, {style}", style_name, f"Estilo {style_name}"
|
|
|
|
| 50 |
|
| 51 |
class QualityControlAgent:
|
|
|
|
|
|
|
|
|
|
| 52 |
def analyze_image_quality(self, image):
|
|
|
|
|
|
|
|
|
|
| 53 |
try:
|
| 54 |
+
if not isinstance(image, Image.Image):
|
| 55 |
+
return {"score": 0.5, "feedback": ["No se pudo analizar"]}
|
| 56 |
+
|
| 57 |
+
# Métrica simple de contraste
|
| 58 |
+
stat = ImageStat.Stat(image)
|
| 59 |
+
if len(stat.stddev) == 3:
|
| 60 |
+
contrast = np.mean(stat.stddev) / 255.0
|
| 61 |
+
else:
|
| 62 |
+
contrast = 0.5
|
| 63 |
+
|
| 64 |
+
score = min(contrast * 2, 1.0) # Escalar a 0-1
|
| 65 |
|
| 66 |
+
feedback = ["Buena calidad"] if score > 0.6 else ["Calidad mejorable"]
|
| 67 |
|
| 68 |
return {
|
| 69 |
+
"score": round(score, 2),
|
| 70 |
+
"metrics": {"contrast": contrast},
|
| 71 |
+
"feedback": feedback
|
| 72 |
}
|
| 73 |
+
except:
|
| 74 |
return {"score": 0.5, "feedback": ["Error en análisis"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
class EmotionAgent:
|
| 77 |
def __init__(self):
|
| 78 |
+
self.emotions = {
|
| 79 |
+
"subtle_smile": "hint of smile, natural expression",
|
| 80 |
+
"serious": "neutral expression, focused gaze",
|
| 81 |
+
"joyful": "genuine smile, happy expression"
|
|
|
|
| 82 |
}
|
|
|
|
| 83 |
|
| 84 |
def add_emotion_cues(self, base_prompt, emotion):
|
| 85 |
+
emotion_cues = self.emotions.get(emotion, "natural expression")
|
| 86 |
return f"{base_prompt}, {emotion_cues}"
|
| 87 |
|
| 88 |
def get_available_emotions(self):
|
| 89 |
+
return list(self.emotions.keys())
|
| 90 |
+
|
| 91 |
+
# ========== GENERADOR DE IMÁGENES SIMPLIFICADO ==========
|
| 92 |
|
| 93 |
class ImageGenerator:
|
| 94 |
def __init__(self):
|
| 95 |
+
self.model_loaded = False
|
| 96 |
+
print("🔄 Inicializando generador...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
def generate_image(self, prompt, negative_prompt="", width=512, height=768):
|
| 99 |
+
print(f"🎨 Generando: {prompt[:50]}...")
|
|
|
|
| 100 |
|
| 101 |
try:
|
| 102 |
+
# Intentar cargar diffusers solo cuando sea necesario
|
| 103 |
+
from diffusers import StableDiffusionPipeline
|
| 104 |
+
import torch
|
| 105 |
+
|
| 106 |
+
if not self.model_loaded:
|
| 107 |
+
print("📥 Cargando modelo...")
|
| 108 |
+
self.pipeline = StableDiffusionPipeline.from_pretrained(
|
| 109 |
+
"runwayml/stable-diffusion-v1-5",
|
| 110 |
+
torch_dtype=torch.float32,
|
| 111 |
+
safety_checker=None,
|
| 112 |
+
requires_safety_checker=False,
|
| 113 |
)
|
| 114 |
+
self.pipeline = self.pipeline.to("cpu")
|
| 115 |
+
self.pipeline.enable_attention_slicing()
|
| 116 |
+
self.model_loaded = True
|
| 117 |
+
|
| 118 |
+
# Generar imagen
|
| 119 |
+
result = self.pipeline(
|
| 120 |
+
prompt=prompt,
|
| 121 |
+
negative_prompt=negative_prompt,
|
| 122 |
+
width=width,
|
| 123 |
+
height=height,
|
| 124 |
+
num_inference_steps=15, # Menos pasos para más velocidad
|
| 125 |
+
guidance_scale=7.0,
|
| 126 |
+
generator=torch.manual_seed(42)
|
| 127 |
+
)
|
| 128 |
|
| 129 |
+
return result.images[0]
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
except Exception as e:
|
| 132 |
+
print(f"❌ Error: {e}")
|
| 133 |
+
# Crear imagen de placeholder
|
| 134 |
+
return self.create_placeholder_image(width, height)
|
| 135 |
+
|
| 136 |
+
def create_placeholder_image(self, width, height):
|
| 137 |
+
# Crear una imagen simple de placeholder
|
| 138 |
+
img = Image.new('RGB', (width, height), color=(73, 109, 137))
|
| 139 |
+
return img
|
| 140 |
|
| 141 |
# ========== APLICACIÓN PRINCIPAL ==========
|
| 142 |
|
|
|
|
| 144 |
def __init__(self):
|
| 145 |
print("🚀 Iniciando HyperReal Studio 916...")
|
| 146 |
|
|
|
|
| 147 |
self.lighting_agent = LightingAgent()
|
| 148 |
self.texture_agent = TextureAgent()
|
| 149 |
self.composition_agent = CompositionAgent()
|
|
|
|
| 155 |
print("✅ ¡Aplicación lista!")
|
| 156 |
|
| 157 |
def generate_portrait(self, description, lighting_style, emotion, composition_type, enhance_texture, style_preset):
|
| 158 |
+
print("🎨 Iniciando generación...")
|
|
|
|
| 159 |
|
| 160 |
+
negative_prompt = "cartoon, 3d, render, anime, fake, deformed, blurry"
|
|
|
|
| 161 |
|
| 162 |
# Aplicar agentes
|
| 163 |
current_prompt = description
|
|
|
|
|
|
|
| 164 |
current_prompt = self.emotion_agent.add_emotion_cues(current_prompt, emotion)
|
|
|
|
|
|
|
| 165 |
current_prompt, _ = self.lighting_agent.optimize_lighting(current_prompt, lighting_style)
|
|
|
|
|
|
|
| 166 |
current_prompt, _ = self.composition_agent.optimize_composition(current_prompt, composition_type)
|
|
|
|
|
|
|
| 167 |
current_prompt, _, _ = self.style_agent.apply_style(current_prompt, style_preset)
|
| 168 |
|
|
|
|
| 169 |
if enhance_texture:
|
| 170 |
current_prompt = self.texture_agent.enhance_textures(current_prompt)
|
| 171 |
|
| 172 |
# Generar imagen
|
| 173 |
+
image = self.image_generator.generate_image(current_prompt, negative_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
# Analizar calidad
|
| 176 |
quality_analysis = self.quality_agent.analyze_image_quality(image)
|
| 177 |
|
| 178 |
+
print("✅ Proceso completado")
|
|
|
|
| 179 |
|
| 180 |
return image, quality_analysis['score'], current_prompt, quality_analysis
|
| 181 |
|
| 182 |
def create_interface():
|
| 183 |
studio = HyperRealStudio916()
|
| 184 |
|
| 185 |
+
with gr.Blocks(title="HyperReal Studio 916") as demo:
|
| 186 |
+
gr.Markdown("# 🎨 HyperReal Studio 916")
|
| 187 |
+
gr.Markdown("Generador de retratos hiperrealistas")
|
|
|
|
|
|
|
| 188 |
|
| 189 |
with gr.Row():
|
| 190 |
+
with gr.Column():
|
| 191 |
description = gr.Textbox(
|
| 192 |
+
label="Descripción",
|
| 193 |
+
placeholder="Describe la persona o escena...",
|
| 194 |
+
lines=2
|
| 195 |
)
|
| 196 |
|
| 197 |
lighting_style = gr.Dropdown(
|
| 198 |
+
choices=["cinematic", "natural", "studio"],
|
| 199 |
+
label="Iluminación",
|
| 200 |
value="natural"
|
| 201 |
)
|
| 202 |
|
| 203 |
emotion = gr.Dropdown(
|
| 204 |
choices=studio.emotion_agent.get_available_emotions(),
|
| 205 |
+
label="Emoción",
|
| 206 |
value="subtle_smile"
|
| 207 |
)
|
| 208 |
|
| 209 |
composition_type = gr.Dropdown(
|
| 210 |
choices=["portrait", "full_body"],
|
| 211 |
+
label="Composición",
|
| 212 |
value="portrait"
|
| 213 |
)
|
| 214 |
|
| 215 |
style_preset = gr.Dropdown(
|
| 216 |
choices=["photorealistic", "cinematic"],
|
| 217 |
+
label="Estilo",
|
| 218 |
value="photorealistic"
|
| 219 |
)
|
| 220 |
|
| 221 |
+
enhance_texture = gr.Checkbox(label="Mejorar texturas", value=True)
|
| 222 |
+
generate_btn = gr.Button("Generar Retrato", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
+
with gr.Column():
|
| 225 |
+
output_image = gr.Image(label="Retrato Generado", height=400)
|
| 226 |
+
realism_score = gr.Number(label="Calidad", precision=2)
|
| 227 |
+
used_prompt = gr.Textbox(label="Prompt Utilizado", lines=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
+
with gr.Accordion("Análisis", open=False):
|
| 230 |
+
quality_analysis = gr.JSON(label="Métricas")
|
|
|
|
|
|
|
| 231 |
|
| 232 |
gr.Examples(
|
| 233 |
examples=[
|
| 234 |
+
["mujer joven sonriendo", "natural", "subtle_smile", "portrait", "photorealistic"],
|
| 235 |
+
["hombre serio con barba", "cinematic", "serious", "portrait", "cinematic"]
|
| 236 |
],
|
| 237 |
inputs=[description, lighting_style, emotion, composition_type, style_preset],
|
| 238 |
)
|
|
|
|
| 247 |
|
| 248 |
if __name__ == "__main__":
|
| 249 |
demo = create_interface()
|
| 250 |
+
demo.launch()
|