File size: 9,282 Bytes
b8c7f93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import gradio as gr
import base64
import io
import json
import re
from PIL import Image
from sambanova import SambaNova
from contextlib import redirect_stdout
# =========================
# CONFIGURACIÓN
# =========================
API_KEY = os.getenv("SAMBANOVA_API_KEY")
if not API_KEY:
raise ValueError("❌ Error: Configura la variable SAMBANOVA_API_KEY")
client = SambaNova(
api_key=API_KEY,
base_url="https://api.sambanova.ai/v1",
)
# =========================
# MODELOS
# =========================
MODELS = {
"vision": "Llama-4-Maverick-17B-128E-Instruct",
"code": "DeepSeek-R1-Distill-Llama-70B",
"general_precise": "gpt-oss-120b",
"general_creative": "Qwen3-32B",
}
# =========================
# CLASIFICACIÓN LOCAL
# =========================
def classify_task_local(message, has_image):
if has_image:
return "vision"
msg = message.lower().strip()
if re.search(r'\b(imagen|foto|describe|ver|colores|visual|ocr|objeto)\b', msg):
return "vision"
if re.search(r'\b(código|python|js|java|debug|función|error|clase|algoritmo)\b', msg):
return "code"
if re.search(r'\b(historia|cuento|poema|escribe|creativo|inventa|relato|personaje)\b', msg):
return "general_creative"
return "general_precise"
# =========================
# HERRAMIENTAS
# =========================
TOOLS = [
{
"type": "function",
"function": {
"name": "execute_python",
"description": "Ejecuta código Python en sandbox seguro.",
"parameters": {
"type": "object",
"properties": {"code": {"type": "string"}},
"required": ["code"]
}
}
}
]
def execute_tool(tool_call):
name = tool_call.function.name
try:
args = json.loads(tool_call.function.arguments)
except json.JSONDecodeError:
return "❌ Argumentos inválidos."
if name == "execute_python":
code = args.get("code", "")
if not code.strip():
return "❌ Código vacío."
output = io.StringIO()
try:
with redirect_stdout(output):
exec(code, {"__builtins__": {}}, {})
result = output.getvalue().strip()
return f"✅ {result}" if result else "✅ Ejecutado sin salida."
except Exception as e:
return f"❌ Error: {str(e)}"
return f"❌ Tool no implementada: {name}"
# =========================
# ESTILO VISUAL DEL MODELO
# =========================
def model_badge(model_name):
colors = {
"gpt": "background-color:#3182ce;color:white;",
"Qwen3": "background-color:#38a169;color:white;",
"DeepSeek": "background-color:#e53e3e;color:white;",
"Llama": "background-color:#805ad5;color:white;",
}
for key, style in colors.items():
if key.lower() in model_name.lower():
return f'<span style="{style}padding:2px 6px;border-radius:6px;font-size:0.8em;">{model_name}</span>'
return f'<span style="background-color:#718096;color:white;padding:2px 6px;border-radius:6px;font-size:0.8em;">{model_name}</span>'
# =========================
# CHAT PRINCIPAL - CORREGIDO
# =========================
def chat_with_batuto(system_prompt, message, image, history):
if not message.strip():
return history, "", None
has_image = image is not None
task_type = classify_task_local(message, has_image)
selected_model = MODELS[task_type]
model_name = selected_model.split('-')[0]
# Construir mensajes para la API
messages = [{"role": "system", "content": system_prompt or "Eres BATUTO/ANDROIDE_90. Responde natural en español."}]
# Convertir historial de Gradio a formato de API
for entry in history:
if isinstance(entry, list) and len(entry) == 2:
user_msg, bot_msg = entry
messages.append({"role": "user", "content": str(user_msg)})
messages.append({"role": "assistant", "content": str(bot_msg)})
# Agregar mensaje actual
if selected_model == "Llama-4-Maverick-17B-128E-Instruct" and has_image:
buffered = io.BytesIO()
image.save(buffered, format="PNG", optimize=True)
b64_img = base64.b64encode(buffered.getvalue()).decode()
content = [
{"type": "text", "text": message},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64_img}"}}
]
messages.append({"role": "user", "content": content})
else:
messages.append({"role": "user", "content": message})
try:
tools_param = TOOLS if task_type != "vision" else None
api_call = client.chat.completions.create(
model=selected_model,
messages=messages,
tools=tools_param,
tool_choice="auto" if tools_param else None,
temperature=0.15,
top_p=0.1,
max_tokens=1024,
)
msg_out = api_call.choices[0].message
badge = model_badge(selected_model)
# Procesar respuesta
if msg_out.content:
reply = f"{badge} {msg_out.content}"
elif hasattr(msg_out, 'tool_calls') and msg_out.tool_calls:
tool_results = []
for tool_call in msg_out.tool_calls:
result = execute_tool(tool_call)
tool_results.append(f"🔧 {tool_call.function.name}: {result}")
reply = f"{badge} " + "\n".join(tool_results)
else:
reply = f"{badge} Respuesta vacía."
# Actualizar historial en formato Gradio (tuplas)
history.append((message, reply))
return history, "", None
except Exception as e:
import traceback
error = f"❌ [{model_name}] {str(e)}"
print(f"Error completo: {traceback.format_exc()}")
history.append((message, error))
return history, "", None
# =========================
# INTERFAZ DE GRADIO - CORREGIDA
# =========================
def clear_inputs():
return [], "", None
with gr.Blocks(
title="🤖 BATUTO/ANDROIDE_90 Pro",
theme=gr.themes.Soft(primary_hue="blue"),
css="""
.gradio-container {max-width: 1000px !important; margin: auto;}
.header {text-align: center; padding: 15px; background: linear-gradient(135deg,#667eea 0%,#764ba2 100%); color: white; border-radius: 8px;}
.chatbot {min-height: 480px;}
""",
) as demo:
with gr.Column(elem_classes="header"):
gr.Markdown("""
# 🤖 BATUTO/ANDROIDE_90 Pro
**Modelos SambaNova optimizados con selección automática y visualización**
""")
with gr.Tabs():
with gr.TabItem("💬 Chat"):
system_prompt = gr.Textbox(
lines=3,
value="Eres BATUTO/ANDROIDE_90. Responde de manera natural y precisa en español.",
label="Prompt del sistema"
)
# Cambiar a type por defecto (sin "messages")
chatbot = gr.Chatbot(
height=480,
show_copy_button=True,
elem_classes="chatbot"
)
msg = gr.Textbox(placeholder="Escribe tu mensaje...", label="Mensaje")
img = gr.Image(type="pil", label="Imagen opcional")
send = gr.Button("🚀 Enviar", variant="primary")
clear = gr.Button("🧹 Limpiar")
send.click(
chat_with_batuto,
[system_prompt, msg, img, chatbot],
[chatbot, msg, img]
)
msg.submit(
chat_with_batuto,
[system_prompt, msg, img, chatbot],
[chatbot, msg, img]
)
clear.click(clear_inputs, None, [chatbot, msg, img])
with gr.TabItem("⚙️ Ejecutor de Código"):
gr.Markdown("### Ejecutor Independiente de Python")
code_input = gr.Code(
language="python",
lines=8,
value='print("¡Hola desde BATUTO!")\nresultado = 2 + 2\nprint(f"2 + 2 = {resultado}")',
label="Código Python"
)
exec_output = gr.Textbox(
lines=8,
label="Resultado de la ejecución",
interactive=False
)
def execute_independent(code):
if not code.strip():
return "❌ Código vacío."
output = io.StringIO()
try:
with redirect_stdout(output):
exec(code, {"__builtins__": {}}, {})
result = output.getvalue().strip()
return f"✅ Ejecutado correctamente:\n{result}" if result else "✅ Código ejecutado sin salida."
except Exception as e:
return f"❌ Error:\n{str(e)}"
exec_button = gr.Button("▶️ Ejecutar Código", variant="primary")
exec_button.click(execute_independent, code_input, exec_output)
gr.Markdown("**Estado:** ✅ Modelos SambaNova activos | Visualización multimodal habilitada")
# Lanzar la app
if __name__ == "__main__":
demo.launch(share=True, show_error=True) |