Spaces:
Runtime error
Runtime error
Commit
·
1b6979d
1
Parent(s):
de6961e
update
Browse files
app.py
CHANGED
|
@@ -1,9 +1,56 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from
|
|
|
|
| 3 |
|
| 4 |
-
pipe = pipeline('sentiment-analysis')
|
| 5 |
-
text = st.text_area('enter some text')
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import streamlit as st
|
| 3 |
+
from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, ServiceContext
|
| 4 |
+
from llama_index.llm_predictor.chatgpt import ChatGPTLLMPredictor
|
| 5 |
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
index_name = "./index.json"
|
| 8 |
+
documents_folder = "./documents"
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@st.cache_resource
|
| 12 |
+
def initialize_index(index_name, documents_folder):
|
| 13 |
+
llm_predictor = ChatGPTLLMPredictor()
|
| 14 |
+
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)
|
| 15 |
+
if os.path.exists(index_name):
|
| 16 |
+
index = GPTSimpleVectorIndex.load_from_disk(index_name, service_context=service_context)
|
| 17 |
+
else:
|
| 18 |
+
documents = SimpleDirectoryReader(documents_folder).load_data()
|
| 19 |
+
index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context)
|
| 20 |
+
index.save_to_disk(index_name)
|
| 21 |
+
|
| 22 |
+
return index
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@st.cache_data(max_entries=200, persist=True)
|
| 26 |
+
def query_index(_index, query_text):
|
| 27 |
+
response = _index.query(query_text)
|
| 28 |
+
return str(response)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
st.title("🦙 Llama Index Demo 🦙")
|
| 32 |
+
st.header("Welcome to the Llama Index Streamlit Demo")
|
| 33 |
+
st.write("Enter a query about Paul Graham's essays. You can check out the original essay [here](https://raw.githubusercontent.com/jerryjliu/llama_index/main/examples/paul_graham_essay/data/paul_graham_essay.txt). Your query will be answered using the essay as context, using embeddings from text-ada-002 and LLM completions from ChatGPT. You can read more about Llama Index and how this works in [our docs!](https://gpt-index.readthedocs.io/en/latest/index.html)")
|
| 34 |
+
|
| 35 |
+
index = None
|
| 36 |
+
api_key = st.text_input("Enter your OpenAI API key here:", type="password")
|
| 37 |
+
if api_key:
|
| 38 |
+
os.environ['OPENAI_API_KEY'] = api_key
|
| 39 |
+
index = initialize_index(index_name, documents_folder)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if index is None:
|
| 43 |
+
st.warning("Please enter your api key first.")
|
| 44 |
+
|
| 45 |
+
text = st.text_input("Query text:", value="What did the author do growing up?")
|
| 46 |
+
|
| 47 |
+
if st.button("Run Query") and text is not None:
|
| 48 |
+
response = query_index(index, text)
|
| 49 |
+
st.markdown(response)
|
| 50 |
+
|
| 51 |
+
llm_col, embed_col = st.columns(2)
|
| 52 |
+
with llm_col:
|
| 53 |
+
st.markdown(f"LLM Tokens Used: {index.service_context.llm_predictor._last_token_usage}")
|
| 54 |
+
|
| 55 |
+
with embed_col:
|
| 56 |
+
st.markdown(f"Embedding Tokens Used: {index.service_context.embed_model._last_token_usage}")
|