Update stls.py
Browse files
stls.py
CHANGED
|
@@ -1,14 +1,54 @@
|
|
| 1 |
-
import yfinance as yf
|
| 2 |
import pandas as pd
|
| 3 |
from datetime import datetime, timedelta
|
| 4 |
from pymongo import MongoClient
|
| 5 |
import pytz
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
mongo_url = os.environ['MongoURL']
|
| 9 |
df_logo = pd.read_csv('https://raw.githubusercontent.com/jarvisx17/nifty500/main/Stocks.csv')
|
| 10 |
df_logo = df_logo[['Symbol','Industry', "logo", "FNO"]]
|
| 11 |
tz = pytz.timezone('Asia/Kolkata')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def UpdatedCollectionName():
|
| 13 |
current_time = datetime.now(tz)
|
| 14 |
collection_name = current_time.strftime('%Y-%m-%d')
|
|
@@ -35,8 +75,7 @@ def get_rsi(close, lookback=14):
|
|
| 35 |
down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean()
|
| 36 |
rs = up_ewm / down_ewm
|
| 37 |
rsi = 100 - (100 / (1 + rs))
|
| 38 |
-
|
| 39 |
-
return rsi_df
|
| 40 |
|
| 41 |
def Stocks():
|
| 42 |
# end_date = datetime.today()
|
|
@@ -58,14 +97,16 @@ def Stocks():
|
|
| 58 |
print("Downloading data...")
|
| 59 |
for symbol in nifty500_symbols:
|
| 60 |
try:
|
| 61 |
-
stock_data =
|
| 62 |
stock_data['Symbol'] = symbol
|
| 63 |
nifty500_data = pd.concat([nifty500_data, stock_data], axis=0)
|
| 64 |
except Exception as e:
|
| 65 |
print(f"Error fetching data for {symbol}: {e}")
|
| 66 |
|
| 67 |
-
nifty500_data
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
nifty500_data['SMA20'] = nifty500_data.groupby('Symbol')['Close'].transform(lambda x: x.rolling(window=20).mean())
|
| 70 |
nifty500_data['PercentageChange'] = nifty500_data.groupby('Symbol')['Close'].pct_change() * 100
|
| 71 |
nifty500_data_last_2_rows = nifty500_data.groupby('Symbol').tail(2)
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
from datetime import datetime, timedelta
|
| 3 |
from pymongo import MongoClient
|
| 4 |
import pytz
|
| 5 |
import os
|
| 6 |
+
import requests
|
| 7 |
|
| 8 |
mongo_url = os.environ['MongoURL']
|
| 9 |
df_logo = pd.read_csv('https://raw.githubusercontent.com/jarvisx17/nifty500/main/Stocks.csv')
|
| 10 |
df_logo = df_logo[['Symbol','Industry', "logo", "FNO"]]
|
| 11 |
tz = pytz.timezone('Asia/Kolkata')
|
| 12 |
+
|
| 13 |
+
base_url = "https://groww.in/v1/api/charting_service/v3/chart/exchange/NSE/segment/CASH/"
|
| 14 |
+
indian_timezone = pytz.timezone('Asia/Kolkata')
|
| 15 |
+
utc_timezone = pytz.timezone('UTC')
|
| 16 |
+
headers = {
|
| 17 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0'
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
def get_time_range(days=7):
|
| 21 |
+
current_time = datetime.now(indian_timezone)
|
| 22 |
+
start_time = current_time - timedelta(days=days)
|
| 23 |
+
start_time_utc = start_time.astimezone(pytz.utc)
|
| 24 |
+
current_time_utc = current_time.astimezone(pytz.utc)
|
| 25 |
+
start_time_millis = int(start_time_utc.timestamp() * 1000)
|
| 26 |
+
end_time_millis = int(current_time_utc.timestamp() * 1000)
|
| 27 |
+
return start_time_millis, end_time_millis
|
| 28 |
+
|
| 29 |
+
def fetch_stock_data(symbol, interval=15, days=7):
|
| 30 |
+
start_time, end_time = get_time_range(days)
|
| 31 |
+
params = {
|
| 32 |
+
'endTimeInMillis': end_time,
|
| 33 |
+
'intervalInMinutes': interval,
|
| 34 |
+
'startTimeInMillis': start_time,
|
| 35 |
+
}
|
| 36 |
+
try:
|
| 37 |
+
print("Downloading data of", symbol.upper())
|
| 38 |
+
response = requests.get(base_url + symbol.upper(), params=params, headers=headers)
|
| 39 |
+
response.raise_for_status()
|
| 40 |
+
data = response.json()
|
| 41 |
+
columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
|
| 42 |
+
for row in data['candles']:
|
| 43 |
+
row[0] = datetime.utcfromtimestamp(row[0])
|
| 44 |
+
df = pd.DataFrame(data['candles'], columns=columns)
|
| 45 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
| 46 |
+
df['Date'] = df['Date'].dt.tz_localize(utc_timezone).dt.tz_convert(indian_timezone)
|
| 47 |
+
return df
|
| 48 |
+
except requests.exceptions.RequestException as e:
|
| 49 |
+
print(f"Error during API request: {e}")
|
| 50 |
+
return None
|
| 51 |
+
|
| 52 |
def UpdatedCollectionName():
|
| 53 |
current_time = datetime.now(tz)
|
| 54 |
collection_name = current_time.strftime('%Y-%m-%d')
|
|
|
|
| 75 |
down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean()
|
| 76 |
rs = up_ewm / down_ewm
|
| 77 |
rsi = 100 - (100 / (1 + rs))
|
| 78 |
+
return rsi
|
|
|
|
| 79 |
|
| 80 |
def Stocks():
|
| 81 |
# end_date = datetime.today()
|
|
|
|
| 97 |
print("Downloading data...")
|
| 98 |
for symbol in nifty500_symbols:
|
| 99 |
try:
|
| 100 |
+
stock_data = fetch_stock_data(symbol.replace('.NS',''), interval=1440, days=365)
|
| 101 |
stock_data['Symbol'] = symbol
|
| 102 |
nifty500_data = pd.concat([nifty500_data, stock_data], axis=0)
|
| 103 |
except Exception as e:
|
| 104 |
print(f"Error fetching data for {symbol}: {e}")
|
| 105 |
|
| 106 |
+
nifty500_data['RSI'] = (
|
| 107 |
+
nifty500_data.groupby('Symbol')['Close']
|
| 108 |
+
.transform(lambda x: get_rsi(x, lookback=14))
|
| 109 |
+
)
|
| 110 |
nifty500_data['SMA20'] = nifty500_data.groupby('Symbol')['Close'].transform(lambda x: x.rolling(window=20).mean())
|
| 111 |
nifty500_data['PercentageChange'] = nifty500_data.groupby('Symbol')['Close'].pct_change() * 100
|
| 112 |
nifty500_data_last_2_rows = nifty500_data.groupby('Symbol').tail(2)
|