Spaces:
Running
Running
Jatin-tec
commited on
Commit
·
65d7391
1
Parent(s):
140553b
Add application file
Browse files- .gitignore +42 -0
- README.md +32 -0
- app.py +132 -0
- requirements.txt +7 -0
- trufor_native/__init__.py +5 -0
- trufor_native/inference.py +130 -0
- trufor_native/models/DnCNN.py +145 -0
- trufor_native/models/__init__.py +10 -0
- trufor_native/models/cmx/LICENSE_CMX.txt +21 -0
- trufor_native/models/cmx/__init__.py +0 -0
- trufor_native/models/cmx/builder_np_conf.py +175 -0
- trufor_native/models/cmx/decoders/MLPDecoder.py +86 -0
- trufor_native/models/cmx/decoders/__init__.py +0 -0
- trufor_native/models/cmx/encoders/__init__.py +0 -0
- trufor_native/models/cmx/encoders/dual_segformer.py +518 -0
- trufor_native/models/cmx/layer_utils.py +45 -0
- trufor_native/models/cmx/net_utils.py +193 -0
- trufor_native/models/cmx/utils/__init__.py +0 -0
- trufor_native/models/cmx/utils/init_func.py +58 -0
- trufor_runner.py +309 -0
.gitignore
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python artifacts
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*.so
|
| 5 |
+
|
| 6 |
+
# Virtual environments
|
| 7 |
+
.venv/
|
| 8 |
+
venv/
|
| 9 |
+
ENV/
|
| 10 |
+
env/
|
| 11 |
+
.env
|
| 12 |
+
.env.*
|
| 13 |
+
|
| 14 |
+
# Packaging / build outputs
|
| 15 |
+
build/
|
| 16 |
+
dist/
|
| 17 |
+
*.egg-info/
|
| 18 |
+
|
| 19 |
+
# Testing and type checking caches
|
| 20 |
+
.pytest_cache/
|
| 21 |
+
.mypy_cache/
|
| 22 |
+
.pytype/
|
| 23 |
+
.ruff_cache/
|
| 24 |
+
.coverage
|
| 25 |
+
coverage.xml
|
| 26 |
+
|
| 27 |
+
# Jupyter
|
| 28 |
+
.ipynb_checkpoints/
|
| 29 |
+
|
| 30 |
+
# Editor and OS cruft
|
| 31 |
+
.vscode/
|
| 32 |
+
.idea/
|
| 33 |
+
*.swp
|
| 34 |
+
.DS_Store
|
| 35 |
+
|
| 36 |
+
# Logs
|
| 37 |
+
*.log
|
| 38 |
+
|
| 39 |
+
# Docker scratch space
|
| 40 |
+
test_docker/data/
|
| 41 |
+
test_docker/data_out/
|
| 42 |
+
|
README.md
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hugging Face Interface Demo
|
| 2 |
+
|
| 3 |
+
This Gradio app compares two detectors for image provenance:
|
| 4 |
+
- Hugging Face `Ateeqq/ai-vs-human-image-detector` estimates whether an image is AI-generated or human-made.
|
| 5 |
+
- A bundled TruFor backend estimates tampering and renders heatmaps when the required weights are present.
|
| 6 |
+
|
| 7 |
+
## Requirements
|
| 8 |
+
- Python 3.9 or newer
|
| 9 |
+
- `pip install -r requirements.txt`
|
| 10 |
+
|
| 11 |
+
## Getting Started
|
| 12 |
+
1. Create or activate a virtual environment that uses Python 3.9+.
|
| 13 |
+
2. Install dependencies:
|
| 14 |
+
```bash
|
| 15 |
+
pip install -r requirements.txt
|
| 16 |
+
```
|
| 17 |
+
3. Launch the interface:
|
| 18 |
+
```bash
|
| 19 |
+
python app.py
|
| 20 |
+
```
|
| 21 |
+
Gradio prints a local URL in the terminal; open it in a browser and upload an image to view the AI/Human probabilities alongside TruFor diagnostics.
|
| 22 |
+
|
| 23 |
+
## TruFor Weights
|
| 24 |
+
TruFor is released for non-commercial research use. Obtain the official `trufor.pth.tar` weight file from the upstream project and place it at `weights/trufor.pth.tar` (or set the environment variable `TRUFOR_WEIGHTS` to point to the file). When the weights are available, the app switches to the native TruFor backend and overlays tamper and confidence heatmaps next to the classifier output.
|
| 25 |
+
|
| 26 |
+
Optional environment variables:
|
| 27 |
+
- `TRUFOR_BACKEND`: force a backend (`native`, `docker`, or `auto`). The default is `auto`, which prefers the bundled native implementation.
|
| 28 |
+
- `TRUFOR_WEIGHTS`: absolute or relative path to `trufor.pth.tar` if you keep the file outside `weights/`.
|
| 29 |
+
|
| 30 |
+
## Notes
|
| 31 |
+
- The TruFor assets are redistributed here as Python modules for convenience, but you must still respect the upstream license for any research or redistribution.
|
| 32 |
+
- Docker support remains available for legacy setups, but no container build steps are required when using the bundled backend.
|
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from typing import Dict, Optional, Tuple
|
| 5 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 6 |
+
|
| 7 |
+
from trufor_runner import TruForEngine, TruForResult, TruForUnavailableError
|
| 8 |
+
|
| 9 |
+
MODEL_ID = "Ateeqq/ai-vs-human-image-detector"
|
| 10 |
+
|
| 11 |
+
# Use GPU when available so large batches stay responsive.
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
|
| 16 |
+
model = SiglipForImageClassification.from_pretrained(MODEL_ID)
|
| 17 |
+
model.to(device)
|
| 18 |
+
model.eval()
|
| 19 |
+
except Exception as exc: # pragma: no cover - surface loading issues early.
|
| 20 |
+
raise RuntimeError(f"Failed to load model from {MODEL_ID}") from exc
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
TRUFOR_ENGINE: Optional[TruForEngine] = TruForEngine(device="cpu")
|
| 24 |
+
TRUFOR_STATUS = TRUFOR_ENGINE.status_message
|
| 25 |
+
except TruForUnavailableError as exc:
|
| 26 |
+
TRUFOR_ENGINE = None
|
| 27 |
+
TRUFOR_STATUS = str(exc)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def analyze_ai_vs_human(image: Image.Image) -> Tuple[Dict[str, float], str]:
|
| 31 |
+
"""Run the Hugging Face detector and return confidences with a readable summary."""
|
| 32 |
+
if image is None:
|
| 33 |
+
empty_scores = {label: 0.0 for label in model.config.id2label.values()}
|
| 34 |
+
return empty_scores, "No image provided."
|
| 35 |
+
|
| 36 |
+
image = image.convert("RGB")
|
| 37 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 38 |
+
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
logits = model(**inputs).logits
|
| 41 |
+
|
| 42 |
+
probabilities = torch.softmax(logits, dim=-1)[0]
|
| 43 |
+
scores = {
|
| 44 |
+
model.config.id2label[idx]: float(probabilities[idx])
|
| 45 |
+
for idx in range(probabilities.size(0))
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
top_idx = int(probabilities.argmax().item())
|
| 49 |
+
top_label = model.config.id2label[top_idx]
|
| 50 |
+
top_score = scores[top_label]
|
| 51 |
+
summary = f"**Predicted Label:** {top_label} \
|
| 52 |
+
**Confidence:** {top_score:.4f}"
|
| 53 |
+
|
| 54 |
+
return scores, summary
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def analyze_trufor(image: Image.Image) -> Tuple[str, Optional[Image.Image], Optional[Image.Image]]:
|
| 58 |
+
"""Run TruFor inference when available, otherwise return diagnostics."""
|
| 59 |
+
if TRUFOR_ENGINE is None:
|
| 60 |
+
return TRUFOR_STATUS, None, None
|
| 61 |
+
|
| 62 |
+
if image is None:
|
| 63 |
+
return "Upload an image to run TruFor.", None, None
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
result: TruForResult = TRUFOR_ENGINE.infer(image)
|
| 67 |
+
except TruForUnavailableError as exc:
|
| 68 |
+
return str(exc), None, None
|
| 69 |
+
|
| 70 |
+
summary_lines = []
|
| 71 |
+
if result.score is not None:
|
| 72 |
+
summary_lines.append(f"**Tamper Score:** {result.score:.4f}")
|
| 73 |
+
extras_dict = result.raw_scores.copy()
|
| 74 |
+
if result.score is not None:
|
| 75 |
+
extras_dict.pop("tamper_score", None)
|
| 76 |
+
if extras_dict:
|
| 77 |
+
extras = " ".join(f"{key}: {value:.4f}" for key, value in extras_dict.items())
|
| 78 |
+
summary_lines.append(f"`{extras}`")
|
| 79 |
+
if not summary_lines:
|
| 80 |
+
summary_lines.append("TruFor returned no scores for this image.")
|
| 81 |
+
|
| 82 |
+
return "\n".join(summary_lines), result.map_overlay, result.confidence_overlay
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def analyze_image(image: Image.Image) -> Tuple[Dict[str, float], str, str, Optional[Image.Image], Optional[Image.Image]]:
|
| 86 |
+
ai_scores, ai_summary = analyze_ai_vs_human(image)
|
| 87 |
+
trufor_summary, tamper_overlay, conf_overlay = analyze_trufor(image)
|
| 88 |
+
return ai_scores, ai_summary, trufor_summary, tamper_overlay, conf_overlay
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
with gr.Blocks() as demo:
|
| 92 |
+
gr.Markdown(
|
| 93 |
+
"""# Image Authenticity Workbench\nUpload an image to compare the AI-vs-human classifier with the TruFor forgery detector."""
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
status_box = gr.Markdown(f"`{TRUFOR_STATUS}`")
|
| 97 |
+
|
| 98 |
+
image_input = gr.Image(label="Input Image", type="pil")
|
| 99 |
+
analyze_button = gr.Button("Analyze", variant="primary", size="sm")
|
| 100 |
+
|
| 101 |
+
with gr.Tabs():
|
| 102 |
+
with gr.TabItem("AI vs Human"):
|
| 103 |
+
ai_label_output = gr.Label(label="Prediction", num_top_classes=2)
|
| 104 |
+
ai_summary_output = gr.Markdown("Upload an image to view the prediction.")
|
| 105 |
+
with gr.TabItem("TruFor Forgery Detection"):
|
| 106 |
+
trufor_summary_output = gr.Markdown("Configure TruFor assets to enable tamper analysis.")
|
| 107 |
+
tamper_overlay_output = gr.Image(label="Tamper Heatmap", type="pil", interactive=False)
|
| 108 |
+
conf_overlay_output = gr.Image(label="Confidence Heatmap", type="pil", interactive=False)
|
| 109 |
+
|
| 110 |
+
output_components = [
|
| 111 |
+
ai_label_output,
|
| 112 |
+
ai_summary_output,
|
| 113 |
+
trufor_summary_output,
|
| 114 |
+
tamper_overlay_output,
|
| 115 |
+
conf_overlay_output,
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
analyze_button.click(
|
| 119 |
+
fn=analyze_image,
|
| 120 |
+
inputs=image_input,
|
| 121 |
+
outputs=output_components,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
image_input.change(
|
| 125 |
+
fn=analyze_image,
|
| 126 |
+
inputs=image_input,
|
| 127 |
+
outputs=output_components,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
if __name__ == "__main__":
|
| 132 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.44.1
|
| 2 |
+
pydantic==2.8.2
|
| 3 |
+
transformers==4.44.2
|
| 4 |
+
torch>=2.1,<3
|
| 5 |
+
Pillow>=10.0
|
| 6 |
+
numpy>=1.23
|
| 7 |
+
timm>=0.5.4
|
trufor_native/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Bundled TruFor model for native inference."""
|
| 2 |
+
|
| 3 |
+
from .inference import TruForBundledModel
|
| 4 |
+
|
| 5 |
+
__all__ = ["TruForBundledModel"]
|
trufor_native/inference.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Optional
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
from .models.cmx.builder_np_conf import myEncoderDecoder as TruForNetwork
|
| 13 |
+
|
| 14 |
+
LOGGER = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@dataclass(frozen=True)
|
| 18 |
+
class TruForOutputs:
|
| 19 |
+
"""Lightweight container for TruFor inference outputs."""
|
| 20 |
+
|
| 21 |
+
tamper_map: np.ndarray
|
| 22 |
+
confidence_map: Optional[np.ndarray]
|
| 23 |
+
detection_score: Optional[float]
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class TruForBundledModel:
|
| 27 |
+
"""Loads the TruFor network from the vendored sources and runs inference."""
|
| 28 |
+
|
| 29 |
+
def __init__(self, weights_path: Path | str, device: str = "cpu") -> None:
|
| 30 |
+
self.weights_path = Path(weights_path)
|
| 31 |
+
if not self.weights_path.exists():
|
| 32 |
+
raise FileNotFoundError(f"TruFor weights missing at {self.weights_path}")
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
self.device = torch.device(device)
|
| 36 |
+
except RuntimeError as exc: # pragma: no cover - defensive path for invalid strings
|
| 37 |
+
raise ValueError(f"Unsupported torch device '{device}'") from exc
|
| 38 |
+
|
| 39 |
+
self.model = self._build_model().to(self.device)
|
| 40 |
+
self.model.eval()
|
| 41 |
+
|
| 42 |
+
# ------------------------------------------------------------------
|
| 43 |
+
# Public API
|
| 44 |
+
# ------------------------------------------------------------------
|
| 45 |
+
def predict(self, image: Image.Image) -> TruForOutputs:
|
| 46 |
+
if image is None:
|
| 47 |
+
raise ValueError("An input image is required for TruFor inference.")
|
| 48 |
+
|
| 49 |
+
tensor = self._prepare_tensor(image).to(self.device)
|
| 50 |
+
|
| 51 |
+
with torch.inference_mode():
|
| 52 |
+
pred, conf, det, _ = self.model(tensor)
|
| 53 |
+
|
| 54 |
+
tamper_map = torch.softmax(pred[0], dim=0)[1].cpu().numpy()
|
| 55 |
+
|
| 56 |
+
confidence_map: Optional[np.ndarray] = None
|
| 57 |
+
if conf is not None:
|
| 58 |
+
confidence_map = torch.sigmoid(conf[0][0]).cpu().numpy()
|
| 59 |
+
|
| 60 |
+
detection_score: Optional[float] = None
|
| 61 |
+
if det is not None:
|
| 62 |
+
detection_score = torch.sigmoid(det).item()
|
| 63 |
+
|
| 64 |
+
return TruForOutputs(
|
| 65 |
+
tamper_map=tamper_map,
|
| 66 |
+
confidence_map=confidence_map,
|
| 67 |
+
detection_score=detection_score,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# ------------------------------------------------------------------
|
| 71 |
+
# Internal helpers
|
| 72 |
+
# ------------------------------------------------------------------
|
| 73 |
+
def _build_model(self) -> torch.nn.Module:
|
| 74 |
+
cfg = self._default_config()
|
| 75 |
+
model = TruForNetwork(cfg=cfg)
|
| 76 |
+
checkpoint = torch.load(self.weights_path, map_location="cpu", weights_only=False)
|
| 77 |
+
state_dict = checkpoint.get("state_dict", checkpoint)
|
| 78 |
+
|
| 79 |
+
missing, unexpected = model.load_state_dict(state_dict, strict=False)
|
| 80 |
+
if missing:
|
| 81 |
+
LOGGER.warning("TruFor missing keys: %s", sorted(missing))
|
| 82 |
+
if unexpected:
|
| 83 |
+
LOGGER.warning("TruFor unexpected keys: %s", sorted(unexpected))
|
| 84 |
+
|
| 85 |
+
return model
|
| 86 |
+
|
| 87 |
+
@staticmethod
|
| 88 |
+
def _prepare_tensor(image: Image.Image) -> torch.Tensor:
|
| 89 |
+
rgb = np.asarray(image.convert("RGB"), dtype=np.float32)
|
| 90 |
+
tensor = torch.from_numpy(rgb.transpose(2, 0, 1)).unsqueeze(0)
|
| 91 |
+
tensor = tensor / 256.0 # matches the reference implementation
|
| 92 |
+
return tensor
|
| 93 |
+
|
| 94 |
+
class AttrNamespace(dict):
|
| 95 |
+
def __getattr__(self, item):
|
| 96 |
+
try:
|
| 97 |
+
return self[item]
|
| 98 |
+
except KeyError as exc:
|
| 99 |
+
raise AttributeError(item) from exc
|
| 100 |
+
|
| 101 |
+
def __setattr__(self, key, value):
|
| 102 |
+
self[key] = value
|
| 103 |
+
|
| 104 |
+
def __contains__(self, item):
|
| 105 |
+
return item in self.keys()
|
| 106 |
+
|
| 107 |
+
@classmethod
|
| 108 |
+
def _default_config(cls) -> AttrNamespace:
|
| 109 |
+
extra = cls.AttrNamespace(
|
| 110 |
+
BACKBONE="mit_b2",
|
| 111 |
+
DECODER="MLPDecoder",
|
| 112 |
+
DECODER_EMBED_DIM=512,
|
| 113 |
+
PREPRC="imagenet",
|
| 114 |
+
BN_EPS=0.001,
|
| 115 |
+
BN_MOMENTUM=0.1,
|
| 116 |
+
DETECTION="confpool",
|
| 117 |
+
CONF=True,
|
| 118 |
+
NP_WEIGHTS="",
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
model = cls.AttrNamespace(
|
| 122 |
+
NAME="detconfcmx",
|
| 123 |
+
MODS=("RGB", "NP++"),
|
| 124 |
+
PRETRAINED="",
|
| 125 |
+
EXTRA=extra,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
dataset = cls.AttrNamespace(NUM_CLASSES=2)
|
| 129 |
+
|
| 130 |
+
return cls.AttrNamespace(MODEL=model, DATASET=dataset)
|
trufor_native/models/DnCNN.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
| 2 |
+
# Copyright (c) 2023 Image Processing Research Group of University Federico II of Naples ('GRIP-UNINA').
|
| 3 |
+
#
|
| 4 |
+
# All rights reserved.
|
| 5 |
+
# This work should only be used for nonprofit purposes.
|
| 6 |
+
#
|
| 7 |
+
# By downloading and/or using any of these files, you implicitly agree to all the
|
| 8 |
+
# terms of the license, as specified in the document LICENSE.txt
|
| 9 |
+
# (included in this package) and online at
|
| 10 |
+
# http://www.grip.unina.it/download/LICENSE_OPEN.txt
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
Created in September 2020
|
| 14 |
+
@author: davide.cozzolino
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
|
| 20 |
+
def conv_with_padding(in_planes, out_planes, kernelsize, stride=1, dilation=1, bias=False, padding = None):
|
| 21 |
+
if padding is None:
|
| 22 |
+
padding = kernelsize//2
|
| 23 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=kernelsize, stride=stride, dilation=dilation, padding=padding, bias=bias)
|
| 24 |
+
|
| 25 |
+
def conv_init(conv, act='linear'):
|
| 26 |
+
r"""
|
| 27 |
+
Reproduces conv initialization from DnCNN
|
| 28 |
+
"""
|
| 29 |
+
n = conv.kernel_size[0] * conv.kernel_size[1] * conv.out_channels
|
| 30 |
+
conv.weight.data.normal_(0, math.sqrt(2. / n))
|
| 31 |
+
|
| 32 |
+
def batchnorm_init(m, kernelsize=3):
|
| 33 |
+
r"""
|
| 34 |
+
Reproduces batchnorm initialization from DnCNN
|
| 35 |
+
"""
|
| 36 |
+
n = kernelsize**2 * m.num_features
|
| 37 |
+
m.weight.data.normal_(0, math.sqrt(2. / (n)))
|
| 38 |
+
m.bias.data.zero_()
|
| 39 |
+
|
| 40 |
+
def make_activation(act):
|
| 41 |
+
if act is None:
|
| 42 |
+
return None
|
| 43 |
+
elif act == 'relu':
|
| 44 |
+
return nn.ReLU(inplace=True)
|
| 45 |
+
elif act == 'tanh':
|
| 46 |
+
return nn.Tanh()
|
| 47 |
+
elif act == 'leaky_relu':
|
| 48 |
+
return nn.LeakyReLU(inplace=True)
|
| 49 |
+
elif act == 'softmax':
|
| 50 |
+
return nn.Softmax()
|
| 51 |
+
elif act == 'linear':
|
| 52 |
+
return None
|
| 53 |
+
else:
|
| 54 |
+
assert(False)
|
| 55 |
+
|
| 56 |
+
def make_net(nplanes_in, kernels, features, bns, acts, dilats, bn_momentum = 0.1, padding=None):
|
| 57 |
+
r"""
|
| 58 |
+
:param nplanes_in: number of of input feature channels
|
| 59 |
+
:param kernels: list of kernel size for convolution layers
|
| 60 |
+
:param features: list of hidden layer feature channels
|
| 61 |
+
:param bns: list of whether to add batchnorm layers
|
| 62 |
+
:param acts: list of activations
|
| 63 |
+
:param dilats: list of dilation factors
|
| 64 |
+
:param bn_momentum: momentum of batchnorm
|
| 65 |
+
:param padding: integer for padding (None for same padding)
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
depth = len(features)
|
| 69 |
+
assert(len(features)==len(kernels))
|
| 70 |
+
|
| 71 |
+
layers = list()
|
| 72 |
+
for i in range(0,depth):
|
| 73 |
+
if i==0:
|
| 74 |
+
in_feats = nplanes_in
|
| 75 |
+
else:
|
| 76 |
+
in_feats = features[i-1]
|
| 77 |
+
|
| 78 |
+
elem = conv_with_padding(in_feats, features[i], kernelsize=kernels[i], dilation=dilats[i], padding=padding, bias=not(bns[i]))
|
| 79 |
+
conv_init(elem, act=acts[i])
|
| 80 |
+
layers.append(elem)
|
| 81 |
+
|
| 82 |
+
if bns[i]:
|
| 83 |
+
elem = nn.BatchNorm2d(features[i], momentum = bn_momentum)
|
| 84 |
+
batchnorm_init(elem, kernelsize=kernels[i])
|
| 85 |
+
layers.append(elem)
|
| 86 |
+
|
| 87 |
+
elem = make_activation(acts[i])
|
| 88 |
+
if elem is not None:
|
| 89 |
+
layers.append(elem)
|
| 90 |
+
|
| 91 |
+
return nn.Sequential(*layers)
|
| 92 |
+
|
| 93 |
+
class DnCNN(nn.Module):
|
| 94 |
+
r"""
|
| 95 |
+
Implements a DnCNN network
|
| 96 |
+
"""
|
| 97 |
+
def __init__(self, nplanes_in, nplanes_out, features, kernel, depth, activation, residual, bn, lastact=None, bn_momentum = 0.10, padding=None):
|
| 98 |
+
r"""
|
| 99 |
+
:param nplanes_in: number of of input feature channels
|
| 100 |
+
:param nplanes_out: number of of output feature channels
|
| 101 |
+
:param features: number of of hidden layer feature channels
|
| 102 |
+
:param kernel: kernel size of convolution layers
|
| 103 |
+
:param depth: number of convolution layers (minimum 2)
|
| 104 |
+
:param bn: whether to add batchnorm layers
|
| 105 |
+
:param residual: whether to add a residual connection from input to output
|
| 106 |
+
:param bn_momentum: momentum of batchnorm
|
| 107 |
+
:param padding: inteteger for padding
|
| 108 |
+
"""
|
| 109 |
+
super(DnCNN, self).__init__()
|
| 110 |
+
|
| 111 |
+
self.residual = residual
|
| 112 |
+
self.nplanes_out = nplanes_out
|
| 113 |
+
self.nplanes_in = nplanes_in
|
| 114 |
+
|
| 115 |
+
kernels = [kernel, ] * depth
|
| 116 |
+
features = [features, ] * (depth-1) + [nplanes_out, ]
|
| 117 |
+
bns = [False, ] + [bn,] * (depth - 2) + [False, ]
|
| 118 |
+
dilats = [1, ] * depth
|
| 119 |
+
acts = [activation, ] * (depth - 1) + [lastact, ]
|
| 120 |
+
self.layers = make_net(nplanes_in, kernels, features, bns, acts, dilats=dilats, bn_momentum = bn_momentum, padding=padding)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def forward(self, x):
|
| 124 |
+
shortcut = x
|
| 125 |
+
|
| 126 |
+
x = self.layers(x)
|
| 127 |
+
|
| 128 |
+
if self.residual:
|
| 129 |
+
nshortcut = min(self.nplanes_in, self.nplanes_out)
|
| 130 |
+
x[:, :nshortcut, :, :] = x[:, :nshortcut, :, :] + shortcut[:, :nshortcut, :, :]
|
| 131 |
+
|
| 132 |
+
return x
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def add_commandline_networkparams(parser, name, features, depth, kernel, activation, bn):
|
| 136 |
+
parser.add_argument("--{}.{}".format(name, "features" ), type=int, default=features )
|
| 137 |
+
parser.add_argument("--{}.{}".format(name, "depth" ), type=int, default=depth )
|
| 138 |
+
parser.add_argument("--{}.{}".format(name, "kernel" ), type=int, default=kernel )
|
| 139 |
+
parser.add_argument("--{}.{}".format(name, "activation"), type=str, default=activation)
|
| 140 |
+
|
| 141 |
+
bnarg = "{}.{}".format(name, "bn")
|
| 142 |
+
parser.add_argument("--"+bnarg , action="store_true", dest=bnarg)
|
| 143 |
+
parser.add_argument("--{}.{}".format(name, "no-bn"), action="store_false", dest=bnarg)
|
| 144 |
+
parser.set_defaults(**{bnarg: bn})
|
| 145 |
+
|
trufor_native/models/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
| 2 |
+
# Copyright (c) 2023 Image Processing Research Group of University Federico II of Naples ('GRIP-UNINA').
|
| 3 |
+
#
|
| 4 |
+
# All rights reserved.
|
| 5 |
+
# This work should only be used for nonprofit purposes.
|
| 6 |
+
#
|
| 7 |
+
# By downloading and/or using any of these files, you implicitly agree to all the
|
| 8 |
+
# terms of the license, as specified in the document LICENSE.txt
|
| 9 |
+
# (included in this package) and online at
|
| 10 |
+
# http://www.grip.unina.it/download/LICENSE_OPEN.txt
|
trufor_native/models/cmx/LICENSE_CMX.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2022 Huayao Liu
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
trufor_native/models/cmx/__init__.py
ADDED
|
File without changes
|
trufor_native/models/cmx/builder_np_conf.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Edited in September 2022
|
| 3 |
+
@author: fabrizio.guillaro, davide.cozzolino
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
from .utils.init_func import init_weight
|
| 12 |
+
|
| 13 |
+
import logging
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def preprc_imagenet_torch(x):
|
| 17 |
+
mean = torch.Tensor([0.485, 0.456, 0.406]).to(x.device)
|
| 18 |
+
std = torch.Tensor([0.229, 0.224, 0.225]).to(x.device)
|
| 19 |
+
x = (x-mean[None, :, None, None]) / std[None, :, None, None]
|
| 20 |
+
return x
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def create_backbone(typ, norm_layer):
|
| 24 |
+
channels = [64, 128, 320, 512]
|
| 25 |
+
if typ == 'mit_b2':
|
| 26 |
+
logging.info('Using backbone: Segformer-B2')
|
| 27 |
+
from .encoders.dual_segformer import mit_b2 as backbone_
|
| 28 |
+
backbone = backbone_(norm_fuse=norm_layer)
|
| 29 |
+
else:
|
| 30 |
+
raise NotImplementedError('backbone not implemented')
|
| 31 |
+
return backbone, channels
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class myEncoderDecoder(nn.Module):
|
| 35 |
+
def __init__(self, cfg=None, norm_layer=nn.BatchNorm2d):
|
| 36 |
+
super(myEncoderDecoder, self).__init__()
|
| 37 |
+
|
| 38 |
+
self.norm_layer = norm_layer
|
| 39 |
+
self.cfg = cfg.MODEL.EXTRA
|
| 40 |
+
self.mods = cfg.MODEL.MODS
|
| 41 |
+
|
| 42 |
+
# import backbone and decoder
|
| 43 |
+
self.backbone, self.channels = create_backbone(self.cfg.BACKBONE, norm_layer)
|
| 44 |
+
|
| 45 |
+
if 'CONF_BACKBONE' in self.cfg:
|
| 46 |
+
self.backbone_conf, self.channels_conf = create_backbone(self.cfg.CONF_BACKBONE, norm_layer)
|
| 47 |
+
else:
|
| 48 |
+
self.backbone_conf = None
|
| 49 |
+
|
| 50 |
+
if self.cfg.DECODER == 'MLPDecoder':
|
| 51 |
+
logging.info('Using MLP Decoder')
|
| 52 |
+
from .decoders.MLPDecoder import DecoderHead
|
| 53 |
+
self.decode_head = DecoderHead(in_channels=self.channels, num_classes=cfg.DATASET.NUM_CLASSES, norm_layer=norm_layer, embed_dim=self.cfg.DECODER_EMBED_DIM)
|
| 54 |
+
|
| 55 |
+
if self.cfg.CONF:
|
| 56 |
+
self.decode_head_conf = DecoderHead(in_channels=self.channels, num_classes=1, norm_layer=norm_layer, embed_dim=self.cfg.DECODER_EMBED_DIM)
|
| 57 |
+
else:
|
| 58 |
+
self.decode_head_conf = None
|
| 59 |
+
|
| 60 |
+
self.conf_detection = None
|
| 61 |
+
if self.cfg.DETECTION is not None:
|
| 62 |
+
if self.cfg.DETECTION == 'none':
|
| 63 |
+
pass
|
| 64 |
+
elif self.cfg.DETECTION == 'confpool':
|
| 65 |
+
self.conf_detection = 'confpool'
|
| 66 |
+
assert self.cfg.CONF
|
| 67 |
+
self.detection = nn.Sequential(
|
| 68 |
+
nn.Linear(in_features=8, out_features=128),
|
| 69 |
+
nn.ReLU(),
|
| 70 |
+
nn.Dropout(p=0.5),
|
| 71 |
+
nn.Linear(in_features=128, out_features=1),
|
| 72 |
+
)
|
| 73 |
+
else:
|
| 74 |
+
raise NotImplementedError('Detection mechanism not implemented')
|
| 75 |
+
|
| 76 |
+
else:
|
| 77 |
+
raise NotImplementedError('decoder not implemented')
|
| 78 |
+
|
| 79 |
+
from ..DnCNN import make_net
|
| 80 |
+
num_levels = 17
|
| 81 |
+
out_channel = 1
|
| 82 |
+
self.dncnn = make_net(3, kernels=[3, ] * num_levels,
|
| 83 |
+
features=[64, ] * (num_levels - 1) + [out_channel],
|
| 84 |
+
bns=[False, ] + [True, ] * (num_levels - 2) + [False, ],
|
| 85 |
+
acts=['relu', ] * (num_levels - 1) + ['linear', ],
|
| 86 |
+
dilats=[1, ] * num_levels,
|
| 87 |
+
bn_momentum=0.1, padding=1)
|
| 88 |
+
|
| 89 |
+
if self.cfg.PREPRC == 'imagenet': #RGB (mean and variance)
|
| 90 |
+
self.prepro = preprc_imagenet_torch
|
| 91 |
+
else:
|
| 92 |
+
assert False
|
| 93 |
+
|
| 94 |
+
self.init_weights(pretrained=cfg.MODEL.PRETRAINED)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def init_weights(self, pretrained=None):
|
| 99 |
+
if pretrained:
|
| 100 |
+
logging.info('Loading pretrained model: {}'.format(pretrained))
|
| 101 |
+
self.backbone.init_weights(pretrained=pretrained)
|
| 102 |
+
if self.backbone_conf is not None:
|
| 103 |
+
self.backbone_conf.init_weights(pretrained=pretrained)
|
| 104 |
+
|
| 105 |
+
np_weights = self.cfg.NP_WEIGHTS
|
| 106 |
+
assert os.path.isfile(np_weights)
|
| 107 |
+
dat = torch.load(np_weights, map_location=torch.device('cpu'))
|
| 108 |
+
logging.info(f'Noiseprint++ weights: {np_weights}')
|
| 109 |
+
if 'network' in dat:
|
| 110 |
+
dat = dat['network']
|
| 111 |
+
self.dncnn.load_state_dict(dat)
|
| 112 |
+
|
| 113 |
+
logging.info('Initing weights ...')
|
| 114 |
+
init_weight(self.decode_head, nn.init.kaiming_normal_,
|
| 115 |
+
self.norm_layer, self.cfg.BN_EPS, self.cfg.BN_MOMENTUM,
|
| 116 |
+
mode='fan_in', nonlinearity='relu')
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def encode_decode(self, rgb, modal_x):
|
| 122 |
+
|
| 123 |
+
if rgb is not None:
|
| 124 |
+
orisize = rgb.shape
|
| 125 |
+
else:
|
| 126 |
+
orisize = modal_x.shape
|
| 127 |
+
|
| 128 |
+
# cmx
|
| 129 |
+
x = self.backbone(rgb, modal_x)
|
| 130 |
+
out, feats = self.decode_head(x, return_feats=True)
|
| 131 |
+
out = F.interpolate(out, size=orisize[2:], mode='bilinear', align_corners=False)
|
| 132 |
+
|
| 133 |
+
# confidence
|
| 134 |
+
if self.decode_head_conf is not None:
|
| 135 |
+
if self.backbone_conf is not None:
|
| 136 |
+
x_conf = self.backbone_conf(rgb, modal_x)
|
| 137 |
+
else:
|
| 138 |
+
x_conf = x # same encoder of Localization Network
|
| 139 |
+
|
| 140 |
+
conf = self.decode_head_conf(x_conf)
|
| 141 |
+
conf = F.interpolate(conf, size=orisize[2:], mode='bilinear', align_corners=False)
|
| 142 |
+
else:
|
| 143 |
+
conf = None
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# detection
|
| 147 |
+
if self.conf_detection is not None:
|
| 148 |
+
if self.conf_detection == 'confpool':
|
| 149 |
+
from .layer_utils import weighted_statistics_pooling
|
| 150 |
+
f1 = weighted_statistics_pooling(conf).view(out.shape[0],-1)
|
| 151 |
+
f2 = weighted_statistics_pooling(out[:,1:2,:,:]-out[:,0:1,:,:], F.logsigmoid(conf)).view(out.shape[0],-1)
|
| 152 |
+
det = self.detection(torch.cat((f1,f2),-1))
|
| 153 |
+
else:
|
| 154 |
+
assert False
|
| 155 |
+
else:
|
| 156 |
+
det = None
|
| 157 |
+
|
| 158 |
+
return out, conf, det
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def forward(self, rgb):
|
| 162 |
+
|
| 163 |
+
# Noiseprint++ extraction
|
| 164 |
+
if 'NP++' in self.mods:
|
| 165 |
+
modal_x = self.dncnn(rgb)
|
| 166 |
+
modal_x = torch.tile(modal_x, (3, 1, 1))
|
| 167 |
+
else:
|
| 168 |
+
modal_x = None
|
| 169 |
+
|
| 170 |
+
if self.prepro is not None:
|
| 171 |
+
rgb = self.prepro(rgb)
|
| 172 |
+
|
| 173 |
+
out, conf, det = self.encode_decode(rgb, modal_x)
|
| 174 |
+
return out, conf, det, modal_x
|
| 175 |
+
|
trufor_native/models/cmx/decoders/MLPDecoder.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
class MLP(nn.Module):
|
| 8 |
+
"""
|
| 9 |
+
Linear Embedding:
|
| 10 |
+
"""
|
| 11 |
+
def __init__(self, input_dim=2048, embed_dim=768):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.proj = nn.Linear(input_dim, embed_dim)
|
| 14 |
+
|
| 15 |
+
def forward(self, x):
|
| 16 |
+
x = x.flatten(2).transpose(1, 2)
|
| 17 |
+
x = self.proj(x)
|
| 18 |
+
return x
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class DecoderHead(nn.Module):
|
| 22 |
+
def __init__(self,
|
| 23 |
+
in_channels=[64, 128, 320, 512],
|
| 24 |
+
num_classes=40,
|
| 25 |
+
dropout_ratio=0.1,
|
| 26 |
+
norm_layer=nn.BatchNorm2d,
|
| 27 |
+
embed_dim=768,
|
| 28 |
+
align_corners=False):
|
| 29 |
+
|
| 30 |
+
super(DecoderHead, self).__init__()
|
| 31 |
+
self.num_classes = num_classes
|
| 32 |
+
self.dropout_ratio = dropout_ratio
|
| 33 |
+
self.align_corners = align_corners
|
| 34 |
+
|
| 35 |
+
self.in_channels = in_channels
|
| 36 |
+
|
| 37 |
+
if dropout_ratio > 0:
|
| 38 |
+
self.dropout = nn.Dropout2d(dropout_ratio)
|
| 39 |
+
else:
|
| 40 |
+
self.dropout = None
|
| 41 |
+
|
| 42 |
+
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels
|
| 43 |
+
|
| 44 |
+
embedding_dim = embed_dim
|
| 45 |
+
self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
|
| 46 |
+
self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
|
| 47 |
+
self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
|
| 48 |
+
self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)
|
| 49 |
+
|
| 50 |
+
self.linear_fuse = nn.Sequential(
|
| 51 |
+
nn.Conv2d(in_channels=embedding_dim*4, out_channels=embedding_dim, kernel_size=1),
|
| 52 |
+
norm_layer(embedding_dim),
|
| 53 |
+
nn.ReLU(inplace=True)
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1)
|
| 57 |
+
|
| 58 |
+
def forward(self, inputs, return_feats=False):
|
| 59 |
+
# len=4, 1/4,1/8,1/16,1/32
|
| 60 |
+
c1, c2, c3, c4 = inputs
|
| 61 |
+
|
| 62 |
+
############## MLP decoder on C1-C4 ###########
|
| 63 |
+
n, _, h, w = c4.shape
|
| 64 |
+
|
| 65 |
+
_c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3])
|
| 66 |
+
_c4 = F.interpolate(_c4, size=c1.size()[2:],mode='bilinear',align_corners=self.align_corners)
|
| 67 |
+
|
| 68 |
+
_c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3])
|
| 69 |
+
_c3 = F.interpolate(_c3, size=c1.size()[2:],mode='bilinear',align_corners=self.align_corners)
|
| 70 |
+
|
| 71 |
+
_c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3])
|
| 72 |
+
_c2 = F.interpolate(_c2, size=c1.size()[2:],mode='bilinear',align_corners=self.align_corners)
|
| 73 |
+
|
| 74 |
+
_c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3])
|
| 75 |
+
|
| 76 |
+
_c = torch.cat([_c4, _c3, _c2, _c1], dim=1)
|
| 77 |
+
x = self.linear_fuse(_c)
|
| 78 |
+
x = self.dropout(x)
|
| 79 |
+
x = self.linear_pred(x)
|
| 80 |
+
|
| 81 |
+
if return_feats:
|
| 82 |
+
return x, _c
|
| 83 |
+
else:
|
| 84 |
+
return x
|
| 85 |
+
|
| 86 |
+
|
trufor_native/models/cmx/decoders/__init__.py
ADDED
|
File without changes
|
trufor_native/models/cmx/encoders/__init__.py
ADDED
|
File without changes
|
trufor_native/models/cmx/encoders/dual_segformer.py
ADDED
|
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from functools import partial
|
| 5 |
+
|
| 6 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
| 7 |
+
from ..net_utils import FeatureFusionModule as FFM
|
| 8 |
+
from ..net_utils import FeatureRectifyModule as FRM
|
| 9 |
+
import math
|
| 10 |
+
import time
|
| 11 |
+
#from engine.logger import get_logger
|
| 12 |
+
import logging as logger
|
| 13 |
+
|
| 14 |
+
#logger = get_logger()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class DWConv(nn.Module):
|
| 18 |
+
"""
|
| 19 |
+
Depthwise convolution bloc: input: x with size(B N C); output size (B N C)
|
| 20 |
+
"""
|
| 21 |
+
def __init__(self, dim=768):
|
| 22 |
+
super(DWConv, self).__init__()
|
| 23 |
+
self.dwconv = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=True, groups=dim)
|
| 24 |
+
|
| 25 |
+
def forward(self, x, H, W):
|
| 26 |
+
B, N, C = x.shape
|
| 27 |
+
x = x.permute(0, 2, 1).reshape(B, C, H, W).contiguous() # B N C -> B C N -> B C H W
|
| 28 |
+
x = self.dwconv(x)
|
| 29 |
+
x = x.flatten(2).transpose(1, 2) # B C H W -> B N C
|
| 30 |
+
|
| 31 |
+
return x
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class Mlp(nn.Module):
|
| 35 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 36 |
+
super().__init__()
|
| 37 |
+
"""
|
| 38 |
+
MLP Block:
|
| 39 |
+
"""
|
| 40 |
+
out_features = out_features or in_features
|
| 41 |
+
hidden_features = hidden_features or in_features
|
| 42 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 43 |
+
self.dwconv = DWConv(hidden_features)
|
| 44 |
+
self.act = act_layer()
|
| 45 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 46 |
+
self.drop = nn.Dropout(drop)
|
| 47 |
+
|
| 48 |
+
self.apply(self._init_weights)
|
| 49 |
+
|
| 50 |
+
def _init_weights(self, m):
|
| 51 |
+
if isinstance(m, nn.Linear):
|
| 52 |
+
trunc_normal_(m.weight, std=.02)
|
| 53 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 54 |
+
nn.init.constant_(m.bias, 0)
|
| 55 |
+
elif isinstance(m, nn.LayerNorm):
|
| 56 |
+
nn.init.constant_(m.bias, 0)
|
| 57 |
+
nn.init.constant_(m.weight, 1.0)
|
| 58 |
+
elif isinstance(m, nn.Conv2d):
|
| 59 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 60 |
+
fan_out //= m.groups
|
| 61 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 62 |
+
if m.bias is not None:
|
| 63 |
+
m.bias.data.zero_()
|
| 64 |
+
|
| 65 |
+
def forward(self, x, H, W):
|
| 66 |
+
x = self.fc1(x)
|
| 67 |
+
x = self.dwconv(x, H, W)
|
| 68 |
+
x = self.act(x)
|
| 69 |
+
x = self.drop(x)
|
| 70 |
+
x = self.fc2(x)
|
| 71 |
+
x = self.drop(x)
|
| 72 |
+
return x
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class Attention(nn.Module):
|
| 76 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
| 77 |
+
super().__init__()
|
| 78 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
| 79 |
+
|
| 80 |
+
self.dim = dim
|
| 81 |
+
self.num_heads = num_heads
|
| 82 |
+
head_dim = dim // num_heads
|
| 83 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 84 |
+
|
| 85 |
+
# Linear embedding
|
| 86 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
| 87 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
| 88 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 89 |
+
self.proj = nn.Linear(dim, dim)
|
| 90 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 91 |
+
|
| 92 |
+
self.sr_ratio = sr_ratio
|
| 93 |
+
if sr_ratio > 1:
|
| 94 |
+
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
| 95 |
+
self.norm = nn.LayerNorm(dim)
|
| 96 |
+
|
| 97 |
+
self.apply(self._init_weights)
|
| 98 |
+
|
| 99 |
+
def _init_weights(self, m):
|
| 100 |
+
if isinstance(m, nn.Linear):
|
| 101 |
+
trunc_normal_(m.weight, std=.02)
|
| 102 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 103 |
+
nn.init.constant_(m.bias, 0)
|
| 104 |
+
elif isinstance(m, nn.LayerNorm):
|
| 105 |
+
nn.init.constant_(m.bias, 0)
|
| 106 |
+
nn.init.constant_(m.weight, 1.0)
|
| 107 |
+
elif isinstance(m, nn.Conv2d):
|
| 108 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 109 |
+
fan_out //= m.groups
|
| 110 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 111 |
+
if m.bias is not None:
|
| 112 |
+
m.bias.data.zero_()
|
| 113 |
+
|
| 114 |
+
def forward(self, x, H, W):
|
| 115 |
+
B, N, C = x.shape
|
| 116 |
+
# B N C -> B N num_head C//num_head -> B C//num_head N num_heads
|
| 117 |
+
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
| 118 |
+
|
| 119 |
+
if self.sr_ratio > 1:
|
| 120 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
| 121 |
+
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
| 122 |
+
x_ = self.norm(x_)
|
| 123 |
+
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 124 |
+
else:
|
| 125 |
+
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 126 |
+
k, v = kv[0], kv[1]
|
| 127 |
+
|
| 128 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 129 |
+
attn = attn.softmax(dim=-1)
|
| 130 |
+
attn = self.attn_drop(attn)
|
| 131 |
+
|
| 132 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 133 |
+
x = self.proj(x)
|
| 134 |
+
x = self.proj_drop(x)
|
| 135 |
+
|
| 136 |
+
return x
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class Block(nn.Module):
|
| 140 |
+
"""
|
| 141 |
+
Transformer Block: Self-Attention -> Mix FFN -> OverLap Patch Merging
|
| 142 |
+
"""
|
| 143 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
| 144 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.norm1 = norm_layer(dim)
|
| 147 |
+
self.attn = Attention(
|
| 148 |
+
dim,
|
| 149 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 150 |
+
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
| 151 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 152 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 153 |
+
self.norm2 = norm_layer(dim)
|
| 154 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 155 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 156 |
+
|
| 157 |
+
self.apply(self._init_weights)
|
| 158 |
+
|
| 159 |
+
def _init_weights(self, m):
|
| 160 |
+
if isinstance(m, nn.Linear):
|
| 161 |
+
trunc_normal_(m.weight, std=.02)
|
| 162 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 163 |
+
nn.init.constant_(m.bias, 0)
|
| 164 |
+
elif isinstance(m, nn.LayerNorm):
|
| 165 |
+
nn.init.constant_(m.bias, 0)
|
| 166 |
+
nn.init.constant_(m.weight, 1.0)
|
| 167 |
+
elif isinstance(m, nn.Conv2d):
|
| 168 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 169 |
+
fan_out //= m.groups
|
| 170 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 171 |
+
if m.bias is not None:
|
| 172 |
+
m.bias.data.zero_()
|
| 173 |
+
|
| 174 |
+
def forward(self, x, H, W):
|
| 175 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
| 176 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
| 177 |
+
|
| 178 |
+
return x
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
class OverlapPatchEmbed(nn.Module):
|
| 182 |
+
""" Image to Patch Embedding
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
|
| 186 |
+
super().__init__()
|
| 187 |
+
img_size = to_2tuple(img_size)
|
| 188 |
+
patch_size = to_2tuple(patch_size)
|
| 189 |
+
|
| 190 |
+
self.img_size = img_size
|
| 191 |
+
self.patch_size = patch_size
|
| 192 |
+
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
| 193 |
+
self.num_patches = self.H * self.W
|
| 194 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
|
| 195 |
+
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
| 196 |
+
self.norm = nn.LayerNorm(embed_dim)
|
| 197 |
+
|
| 198 |
+
self.apply(self._init_weights)
|
| 199 |
+
|
| 200 |
+
def _init_weights(self, m):
|
| 201 |
+
if isinstance(m, nn.Linear):
|
| 202 |
+
trunc_normal_(m.weight, std=.02)
|
| 203 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 204 |
+
nn.init.constant_(m.bias, 0)
|
| 205 |
+
elif isinstance(m, nn.LayerNorm):
|
| 206 |
+
nn.init.constant_(m.bias, 0)
|
| 207 |
+
nn.init.constant_(m.weight, 1.0)
|
| 208 |
+
elif isinstance(m, nn.Conv2d):
|
| 209 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 210 |
+
fan_out //= m.groups
|
| 211 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 212 |
+
if m.bias is not None:
|
| 213 |
+
m.bias.data.zero_()
|
| 214 |
+
|
| 215 |
+
def forward(self, x):
|
| 216 |
+
# B C H W
|
| 217 |
+
x = self.proj(x)
|
| 218 |
+
_, _, H, W = x.shape
|
| 219 |
+
x = x.flatten(2).transpose(1, 2)
|
| 220 |
+
# B H*W/16 C
|
| 221 |
+
x = self.norm(x)
|
| 222 |
+
|
| 223 |
+
return x, H, W
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
class RGBXTransformer(nn.Module):
|
| 227 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
| 228 |
+
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
| 229 |
+
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, norm_fuse=nn.BatchNorm2d,
|
| 230 |
+
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], stride0=4):
|
| 231 |
+
super().__init__()
|
| 232 |
+
self.num_classes = num_classes
|
| 233 |
+
self.depths = depths
|
| 234 |
+
|
| 235 |
+
# patch_embed
|
| 236 |
+
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=stride0, in_chans=in_chans,
|
| 237 |
+
embed_dim=embed_dims[0])
|
| 238 |
+
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
|
| 239 |
+
embed_dim=embed_dims[1])
|
| 240 |
+
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
|
| 241 |
+
embed_dim=embed_dims[2])
|
| 242 |
+
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
|
| 243 |
+
embed_dim=embed_dims[3])
|
| 244 |
+
|
| 245 |
+
self.extra_patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=stride0, in_chans=in_chans,
|
| 246 |
+
embed_dim=embed_dims[0])
|
| 247 |
+
self.extra_patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
|
| 248 |
+
embed_dim=embed_dims[1])
|
| 249 |
+
self.extra_patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
|
| 250 |
+
embed_dim=embed_dims[2])
|
| 251 |
+
self.extra_patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
|
| 252 |
+
embed_dim=embed_dims[3])
|
| 253 |
+
|
| 254 |
+
# transformer encoder
|
| 255 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
| 256 |
+
cur = 0
|
| 257 |
+
|
| 258 |
+
self.block1 = nn.ModuleList([Block(
|
| 259 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 260 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 261 |
+
sr_ratio=sr_ratios[0])
|
| 262 |
+
for i in range(depths[0])])
|
| 263 |
+
self.norm1 = norm_layer(embed_dims[0])
|
| 264 |
+
|
| 265 |
+
self.extra_block1 = nn.ModuleList([Block(
|
| 266 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 267 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 268 |
+
sr_ratio=sr_ratios[0])
|
| 269 |
+
for i in range(depths[0])])
|
| 270 |
+
self.extra_norm1 = norm_layer(embed_dims[0])
|
| 271 |
+
cur += depths[0]
|
| 272 |
+
|
| 273 |
+
self.block2 = nn.ModuleList([Block(
|
| 274 |
+
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 275 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur], norm_layer=norm_layer,
|
| 276 |
+
sr_ratio=sr_ratios[1])
|
| 277 |
+
for i in range(depths[1])])
|
| 278 |
+
self.norm2 = norm_layer(embed_dims[1])
|
| 279 |
+
|
| 280 |
+
self.extra_block2 = nn.ModuleList([Block(
|
| 281 |
+
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 282 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur+1], norm_layer=norm_layer,
|
| 283 |
+
sr_ratio=sr_ratios[1])
|
| 284 |
+
for i in range(depths[1])])
|
| 285 |
+
self.extra_norm2 = norm_layer(embed_dims[1])
|
| 286 |
+
|
| 287 |
+
cur += depths[1]
|
| 288 |
+
|
| 289 |
+
self.block3 = nn.ModuleList([Block(
|
| 290 |
+
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 291 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 292 |
+
sr_ratio=sr_ratios[2])
|
| 293 |
+
for i in range(depths[2])])
|
| 294 |
+
self.norm3 = norm_layer(embed_dims[2])
|
| 295 |
+
|
| 296 |
+
self.extra_block3 = nn.ModuleList([Block(
|
| 297 |
+
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 298 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 299 |
+
sr_ratio=sr_ratios[2])
|
| 300 |
+
for i in range(depths[2])])
|
| 301 |
+
self.extra_norm3 = norm_layer(embed_dims[2])
|
| 302 |
+
|
| 303 |
+
cur += depths[2]
|
| 304 |
+
|
| 305 |
+
self.block4 = nn.ModuleList([Block(
|
| 306 |
+
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 307 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 308 |
+
sr_ratio=sr_ratios[3])
|
| 309 |
+
for i in range(depths[3])])
|
| 310 |
+
self.norm4 = norm_layer(embed_dims[3])
|
| 311 |
+
|
| 312 |
+
self.extra_block4 = nn.ModuleList([Block(
|
| 313 |
+
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 314 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 315 |
+
sr_ratio=sr_ratios[3])
|
| 316 |
+
for i in range(depths[3])])
|
| 317 |
+
self.extra_norm4 = norm_layer(embed_dims[3])
|
| 318 |
+
|
| 319 |
+
cur += depths[3]
|
| 320 |
+
|
| 321 |
+
self.FRMs = nn.ModuleList([
|
| 322 |
+
FRM(dim=embed_dims[0], reduction=1),
|
| 323 |
+
FRM(dim=embed_dims[1], reduction=1),
|
| 324 |
+
FRM(dim=embed_dims[2], reduction=1),
|
| 325 |
+
FRM(dim=embed_dims[3], reduction=1)])
|
| 326 |
+
|
| 327 |
+
self.FFMs = nn.ModuleList([
|
| 328 |
+
FFM(dim=embed_dims[0], reduction=1, num_heads=num_heads[0], norm_layer=norm_fuse),
|
| 329 |
+
FFM(dim=embed_dims[1], reduction=1, num_heads=num_heads[1], norm_layer=norm_fuse),
|
| 330 |
+
FFM(dim=embed_dims[2], reduction=1, num_heads=num_heads[2], norm_layer=norm_fuse),
|
| 331 |
+
FFM(dim=embed_dims[3], reduction=1, num_heads=num_heads[3], norm_layer=norm_fuse)])
|
| 332 |
+
|
| 333 |
+
self.apply(self._init_weights)
|
| 334 |
+
|
| 335 |
+
def _init_weights(self, m):
|
| 336 |
+
if isinstance(m, nn.Linear):
|
| 337 |
+
trunc_normal_(m.weight, std=.02)
|
| 338 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 339 |
+
nn.init.constant_(m.bias, 0)
|
| 340 |
+
elif isinstance(m, nn.LayerNorm):
|
| 341 |
+
nn.init.constant_(m.bias, 0)
|
| 342 |
+
nn.init.constant_(m.weight, 1.0)
|
| 343 |
+
elif isinstance(m, nn.Conv2d):
|
| 344 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 345 |
+
fan_out //= m.groups
|
| 346 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 347 |
+
if m.bias is not None:
|
| 348 |
+
m.bias.data.zero_()
|
| 349 |
+
|
| 350 |
+
def init_weights(self, pretrained=None):
|
| 351 |
+
if isinstance(pretrained, str):
|
| 352 |
+
load_dualpath_model(self, pretrained)
|
| 353 |
+
else:
|
| 354 |
+
raise TypeError('pretrained must be a str or None')
|
| 355 |
+
|
| 356 |
+
def forward_features(self, x_rgb, x_e):
|
| 357 |
+
"""
|
| 358 |
+
x_rgb: B x N x H x W
|
| 359 |
+
"""
|
| 360 |
+
B = x_rgb.shape[0]
|
| 361 |
+
outs = []
|
| 362 |
+
outs_fused = []
|
| 363 |
+
|
| 364 |
+
# stage 1
|
| 365 |
+
x_rgb, H, W = self.patch_embed1(x_rgb)
|
| 366 |
+
# B H*W/16 C
|
| 367 |
+
x_e, _, _ = self.extra_patch_embed1(x_e)
|
| 368 |
+
for i, blk in enumerate(self.block1):
|
| 369 |
+
x_rgb = blk(x_rgb, H, W)
|
| 370 |
+
for i, blk in enumerate(self.extra_block1):
|
| 371 |
+
x_e = blk(x_e, H, W)
|
| 372 |
+
x_rgb = self.norm1(x_rgb)
|
| 373 |
+
x_e = self.extra_norm1(x_e)
|
| 374 |
+
|
| 375 |
+
x_rgb = x_rgb.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 376 |
+
x_e = x_e.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 377 |
+
x_rgb, x_e = self.FRMs[0](x_rgb, x_e)
|
| 378 |
+
x_fused = self.FFMs[0](x_rgb, x_e)
|
| 379 |
+
outs.append(x_fused)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
# stage 2
|
| 383 |
+
x_rgb, H, W = self.patch_embed2(x_rgb)
|
| 384 |
+
x_e, _, _ = self.extra_patch_embed2(x_e)
|
| 385 |
+
for i, blk in enumerate(self.block2):
|
| 386 |
+
x_rgb = blk(x_rgb, H, W)
|
| 387 |
+
for i, blk in enumerate(self.extra_block2):
|
| 388 |
+
x_e = blk(x_e, H, W)
|
| 389 |
+
x_rgb = self.norm2(x_rgb)
|
| 390 |
+
x_e = self.extra_norm2(x_e)
|
| 391 |
+
|
| 392 |
+
x_rgb = x_rgb.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 393 |
+
x_e = x_e.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 394 |
+
x_rgb, x_e = self.FRMs[1](x_rgb, x_e)
|
| 395 |
+
x_fused = self.FFMs[1](x_rgb, x_e)
|
| 396 |
+
outs.append(x_fused)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
# stage 3
|
| 400 |
+
x_rgb, H, W = self.patch_embed3(x_rgb)
|
| 401 |
+
x_e, _, _ = self.extra_patch_embed3(x_e)
|
| 402 |
+
for i, blk in enumerate(self.block3):
|
| 403 |
+
x_rgb = blk(x_rgb, H, W)
|
| 404 |
+
for i, blk in enumerate(self.extra_block3):
|
| 405 |
+
x_e = blk(x_e, H, W)
|
| 406 |
+
x_rgb = self.norm3(x_rgb)
|
| 407 |
+
x_e = self.extra_norm3(x_e)
|
| 408 |
+
|
| 409 |
+
x_rgb = x_rgb.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 410 |
+
x_e = x_e.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 411 |
+
x_rgb, x_e = self.FRMs[2](x_rgb, x_e)
|
| 412 |
+
x_fused = self.FFMs[2](x_rgb, x_e)
|
| 413 |
+
outs.append(x_fused)
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
# stage 4
|
| 417 |
+
x_rgb, H, W = self.patch_embed4(x_rgb)
|
| 418 |
+
x_e, _, _ = self.extra_patch_embed4(x_e)
|
| 419 |
+
for i, blk in enumerate(self.block4):
|
| 420 |
+
x_rgb = blk(x_rgb, H, W)
|
| 421 |
+
for i, blk in enumerate(self.extra_block4):
|
| 422 |
+
x_e = blk(x_e, H, W)
|
| 423 |
+
x_rgb = self.norm4(x_rgb)
|
| 424 |
+
x_e = self.extra_norm4(x_e)
|
| 425 |
+
|
| 426 |
+
x_rgb = x_rgb.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 427 |
+
x_e = x_e.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 428 |
+
x_rgb, x_e = self.FRMs[3](x_rgb, x_e)
|
| 429 |
+
x_fused = self.FFMs[3](x_rgb, x_e)
|
| 430 |
+
outs.append(x_fused)
|
| 431 |
+
|
| 432 |
+
return outs
|
| 433 |
+
|
| 434 |
+
def forward(self, x_rgb, x_e):
|
| 435 |
+
out = self.forward_features(x_rgb, x_e)
|
| 436 |
+
return out
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
def load_dualpath_model(model, model_file):
|
| 440 |
+
# load raw state_dict
|
| 441 |
+
t_start = time.time()
|
| 442 |
+
if isinstance(model_file, str):
|
| 443 |
+
raw_state_dict = torch.load(model_file, map_location=torch.device('cpu'))
|
| 444 |
+
#raw_state_dict = torch.load(model_file)
|
| 445 |
+
if 'model' in raw_state_dict.keys():
|
| 446 |
+
raw_state_dict = raw_state_dict['model']
|
| 447 |
+
else:
|
| 448 |
+
raw_state_dict = model_file
|
| 449 |
+
|
| 450 |
+
state_dict = {}
|
| 451 |
+
for k, v in raw_state_dict.items():
|
| 452 |
+
if k.find('patch_embed') >= 0:
|
| 453 |
+
state_dict[k] = v
|
| 454 |
+
state_dict[k.replace('patch_embed', 'extra_patch_embed')] = v
|
| 455 |
+
elif k.find('block') >= 0:
|
| 456 |
+
state_dict[k] = v
|
| 457 |
+
state_dict[k.replace('block', 'extra_block')] = v
|
| 458 |
+
elif k.find('norm') >= 0:
|
| 459 |
+
state_dict[k] = v
|
| 460 |
+
state_dict[k.replace('norm', 'extra_norm')] = v
|
| 461 |
+
|
| 462 |
+
t_ioend = time.time()
|
| 463 |
+
|
| 464 |
+
model.load_state_dict(state_dict, strict=False)
|
| 465 |
+
del state_dict
|
| 466 |
+
|
| 467 |
+
t_end = time.time()
|
| 468 |
+
logger.info(
|
| 469 |
+
"Load model, Time usage:\n\tIO: {}, initialize parameters: {}".format(
|
| 470 |
+
t_ioend - t_start, t_end - t_ioend))
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
class mit_b0(RGBXTransformer):
|
| 474 |
+
def __init__(self, fuse_cfg=None, stride0=4, **kwargs):
|
| 475 |
+
super(mit_b0, self).__init__(
|
| 476 |
+
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
| 477 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
| 478 |
+
drop_rate=0.0, drop_path_rate=0.1, stride0=stride0)
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
class mit_b1(RGBXTransformer):
|
| 482 |
+
def __init__(self, fuse_cfg=None, stride0=4, **kwargs):
|
| 483 |
+
super(mit_b1, self).__init__(
|
| 484 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
| 485 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
| 486 |
+
drop_rate=0.0, drop_path_rate=0.1, stride0=stride0)
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
class mit_b2(RGBXTransformer):
|
| 490 |
+
def __init__(self, fuse_cfg=None, stride0=4, **kwargs):
|
| 491 |
+
super(mit_b2, self).__init__(
|
| 492 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
| 493 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
| 494 |
+
drop_rate=0.0, drop_path_rate=0.1, stride0=stride0)
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
class mit_b3(RGBXTransformer):
|
| 498 |
+
def __init__(self, fuse_cfg=None, stride0=4, **kwargs):
|
| 499 |
+
super(mit_b3, self).__init__(
|
| 500 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
| 501 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
| 502 |
+
drop_rate=0.0, drop_path_rate=0.1, stride0=stride0)
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
class mit_b4(RGBXTransformer):
|
| 506 |
+
def __init__(self, fuse_cfg=None, stride0=4, **kwargs):
|
| 507 |
+
super(mit_b4, self).__init__(
|
| 508 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
| 509 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
|
| 510 |
+
drop_rate=0.0, drop_path_rate=0.1, stride0=stride0)
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
class mit_b5(RGBXTransformer):
|
| 514 |
+
def __init__(self, fuse_cfg=None, stride0=4, **kwargs):
|
| 515 |
+
super(mit_b5, self).__init__(
|
| 516 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
| 517 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
| 518 |
+
drop_rate=0.0, drop_path_rate=0.1, stride0=stride0)
|
trufor_native/models/cmx/layer_utils.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
| 2 |
+
# Copyright (c) 2023 Image Processing Research Group of University Federico II of Naples ('GRIP-UNINA').
|
| 3 |
+
#
|
| 4 |
+
# All rights reserved.
|
| 5 |
+
# This work should only be used for nonprofit purposes.
|
| 6 |
+
#
|
| 7 |
+
# By downloading and/or using any of these files, you implicitly agree to all the
|
| 8 |
+
# terms of the license, as specified in the document LICENSE.txt
|
| 9 |
+
# (included in this package) and online at
|
| 10 |
+
# http://www.grip.unina.it/download/LICENSE_OPEN.txt
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
Created in September 2022
|
| 14 |
+
@author: davide.cozzolino
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def weighted_statistics_pooling(x, log_w=None):
|
| 22 |
+
b = x.shape[0]
|
| 23 |
+
c = x.shape[1]
|
| 24 |
+
x = x.view(b,c,-1)
|
| 25 |
+
|
| 26 |
+
if log_w is None:
|
| 27 |
+
log_w = torch.zeros((b,1,x.shape[-1]), device=x.device)
|
| 28 |
+
else:
|
| 29 |
+
assert log_w.shape[0]==b
|
| 30 |
+
assert log_w.shape[1]==1
|
| 31 |
+
log_w = log_w.view(b,1,-1)
|
| 32 |
+
|
| 33 |
+
assert log_w.shape[-1]==x.shape[-1]
|
| 34 |
+
|
| 35 |
+
log_w = F.log_softmax(log_w, dim=-1)
|
| 36 |
+
x_min = -torch.logsumexp(log_w-x, dim=-1)
|
| 37 |
+
x_max = torch.logsumexp(log_w+x, dim=-1)
|
| 38 |
+
|
| 39 |
+
w = torch.exp(log_w)
|
| 40 |
+
x_avg = torch.sum(w*x , dim=-1)
|
| 41 |
+
x_msq = torch.sum(w*x*x, dim=-1)
|
| 42 |
+
|
| 43 |
+
x = torch.cat((x_min, x_max, x_avg, x_msq), dim=1)
|
| 44 |
+
|
| 45 |
+
return x
|
trufor_native/models/cmx/net_utils.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from timm.models.layers import trunc_normal_
|
| 5 |
+
import math
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Feature Rectify Module
|
| 9 |
+
class ChannelWeights(nn.Module):
|
| 10 |
+
def __init__(self, dim, reduction=1):
|
| 11 |
+
super(ChannelWeights, self).__init__()
|
| 12 |
+
self.dim = dim
|
| 13 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 14 |
+
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
| 15 |
+
self.mlp = nn.Sequential(
|
| 16 |
+
nn.Linear(self.dim * 4, self.dim * 4 // reduction),
|
| 17 |
+
nn.ReLU(inplace=True),
|
| 18 |
+
nn.Linear(self.dim * 4 // reduction, self.dim * 2),
|
| 19 |
+
nn.Sigmoid())
|
| 20 |
+
|
| 21 |
+
def forward(self, x1, x2):
|
| 22 |
+
B, _, H, W = x1.shape
|
| 23 |
+
x = torch.cat((x1, x2), dim=1)
|
| 24 |
+
avg = self.avg_pool(x).view(B, self.dim * 2)
|
| 25 |
+
max = self.max_pool(x).view(B, self.dim * 2)
|
| 26 |
+
y = torch.cat((avg, max), dim=1) # B 4C
|
| 27 |
+
y = self.mlp(y).view(B, self.dim * 2, 1)
|
| 28 |
+
channel_weights = y.reshape(B, 2, self.dim, 1, 1).permute(1, 0, 2, 3, 4) # 2 B C 1 1
|
| 29 |
+
return channel_weights
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class SpatialWeights(nn.Module):
|
| 33 |
+
def __init__(self, dim, reduction=1):
|
| 34 |
+
super(SpatialWeights, self).__init__()
|
| 35 |
+
self.dim = dim
|
| 36 |
+
self.mlp = nn.Sequential(
|
| 37 |
+
nn.Conv2d(self.dim * 2, self.dim // reduction, kernel_size=1),
|
| 38 |
+
nn.ReLU(inplace=True),
|
| 39 |
+
nn.Conv2d(self.dim // reduction, 2, kernel_size=1),
|
| 40 |
+
nn.Sigmoid())
|
| 41 |
+
|
| 42 |
+
def forward(self, x1, x2):
|
| 43 |
+
B, _, H, W = x1.shape
|
| 44 |
+
x = torch.cat((x1, x2), dim=1) # B 2C H W
|
| 45 |
+
spatial_weights = self.mlp(x).reshape(B, 2, 1, H, W).permute(1, 0, 2, 3, 4) # 2 B 1 H W
|
| 46 |
+
return spatial_weights
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class FeatureRectifyModule(nn.Module):
|
| 50 |
+
def __init__(self, dim, reduction=1, lambda_c=.5, lambda_s=.5):
|
| 51 |
+
super(FeatureRectifyModule, self).__init__()
|
| 52 |
+
self.lambda_c = lambda_c
|
| 53 |
+
self.lambda_s = lambda_s
|
| 54 |
+
self.channel_weights = ChannelWeights(dim=dim, reduction=reduction)
|
| 55 |
+
self.spatial_weights = SpatialWeights(dim=dim, reduction=reduction)
|
| 56 |
+
|
| 57 |
+
def _init_weights(self, m):
|
| 58 |
+
if isinstance(m, nn.Linear):
|
| 59 |
+
trunc_normal_(m.weight, std=.02)
|
| 60 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 61 |
+
nn.init.constant_(m.bias, 0)
|
| 62 |
+
elif isinstance(m, nn.LayerNorm):
|
| 63 |
+
nn.init.constant_(m.bias, 0)
|
| 64 |
+
nn.init.constant_(m.weight, 1.0)
|
| 65 |
+
elif isinstance(m, nn.Conv2d):
|
| 66 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 67 |
+
fan_out //= m.groups
|
| 68 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 69 |
+
if m.bias is not None:
|
| 70 |
+
m.bias.data.zero_()
|
| 71 |
+
|
| 72 |
+
def forward(self, x1, x2):
|
| 73 |
+
channel_weights = self.channel_weights(x1, x2)
|
| 74 |
+
spatial_weights = self.spatial_weights(x1, x2)
|
| 75 |
+
out_x1 = x1 + self.lambda_c * channel_weights[1] * x2 + self.lambda_s * spatial_weights[1] * x2
|
| 76 |
+
out_x2 = x2 + self.lambda_c * channel_weights[0] * x1 + self.lambda_s * spatial_weights[0] * x1
|
| 77 |
+
return out_x1, out_x2
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# Stage 1
|
| 81 |
+
class CrossAttention(nn.Module):
|
| 82 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None):
|
| 83 |
+
super(CrossAttention, self).__init__()
|
| 84 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
| 85 |
+
|
| 86 |
+
self.dim = dim
|
| 87 |
+
self.num_heads = num_heads
|
| 88 |
+
head_dim = dim // num_heads
|
| 89 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 90 |
+
self.kv1 = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
| 91 |
+
self.kv2 = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
| 92 |
+
|
| 93 |
+
def forward(self, x1, x2):
|
| 94 |
+
B, N, C = x1.shape
|
| 95 |
+
q1 = x1.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()
|
| 96 |
+
q2 = x2.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()
|
| 97 |
+
|
| 98 |
+
k1, v1 = self.kv1(x1).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4).contiguous()
|
| 99 |
+
k2, v2 = self.kv2(x2).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4).contiguous()
|
| 100 |
+
|
| 101 |
+
# q,k,v B H N C
|
| 102 |
+
|
| 103 |
+
ctx1 = (k1.transpose(-2, -1) @ v1) * self.scale # B H C C
|
| 104 |
+
ctx1 = ctx1.softmax(dim=-2)
|
| 105 |
+
ctx2 = (k2.transpose(-2, -1) @ v2) * self.scale # B H C C
|
| 106 |
+
ctx2 = ctx2.softmax(dim=-2)
|
| 107 |
+
|
| 108 |
+
x1 = (q1 @ ctx2).permute(0, 2, 1, 3).reshape(B, N, C).contiguous()
|
| 109 |
+
x2 = (q2 @ ctx1).permute(0, 2, 1, 3).reshape(B, N, C).contiguous()
|
| 110 |
+
|
| 111 |
+
return x1, x2
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class CrossPath(nn.Module):
|
| 115 |
+
def __init__(self, dim, reduction=1, num_heads=None, norm_layer=nn.LayerNorm):
|
| 116 |
+
super().__init__()
|
| 117 |
+
self.channel_proj1 = nn.Linear(dim, dim // reduction * 2)
|
| 118 |
+
self.channel_proj2 = nn.Linear(dim, dim // reduction * 2)
|
| 119 |
+
self.act1 = nn.ReLU(inplace=True)
|
| 120 |
+
self.act2 = nn.ReLU(inplace=True)
|
| 121 |
+
self.cross_attn = CrossAttention(dim // reduction, num_heads=num_heads)
|
| 122 |
+
self.end_proj1 = nn.Linear(dim // reduction * 2, dim)
|
| 123 |
+
self.end_proj2 = nn.Linear(dim // reduction * 2, dim)
|
| 124 |
+
self.norm1 = norm_layer(dim)
|
| 125 |
+
self.norm2 = norm_layer(dim)
|
| 126 |
+
|
| 127 |
+
def forward(self, x1, x2):
|
| 128 |
+
y1, u1 = self.act1(self.channel_proj1(x1)).chunk(2, dim=-1)
|
| 129 |
+
y2, u2 = self.act2(self.channel_proj2(x2)).chunk(2, dim=-1)
|
| 130 |
+
v1, v2 = self.cross_attn(u1, u2)
|
| 131 |
+
y1 = torch.cat((y1, v1), dim=-1)
|
| 132 |
+
y2 = torch.cat((y2, v2), dim=-1)
|
| 133 |
+
out_x1 = self.norm1(x1 + self.end_proj1(y1))
|
| 134 |
+
out_x2 = self.norm2(x2 + self.end_proj2(y2))
|
| 135 |
+
return out_x1, out_x2
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# Stage 2
|
| 139 |
+
class ChannelEmbed(nn.Module):
|
| 140 |
+
def __init__(self, in_channels, out_channels, reduction=1, norm_layer=nn.BatchNorm2d):
|
| 141 |
+
super(ChannelEmbed, self).__init__()
|
| 142 |
+
self.out_channels = out_channels
|
| 143 |
+
self.residual = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
| 144 |
+
self.channel_embed = nn.Sequential(
|
| 145 |
+
nn.Conv2d(in_channels, out_channels//reduction, kernel_size=1, bias=True),
|
| 146 |
+
nn.Conv2d(out_channels//reduction, out_channels//reduction, kernel_size=3, stride=1, padding=1, bias=True, groups=out_channels//reduction),
|
| 147 |
+
nn.ReLU(inplace=True),
|
| 148 |
+
nn.Conv2d(out_channels//reduction, out_channels, kernel_size=1, bias=True),
|
| 149 |
+
norm_layer(out_channels)
|
| 150 |
+
)
|
| 151 |
+
self.norm = norm_layer(out_channels)
|
| 152 |
+
|
| 153 |
+
def forward(self, x, H, W):
|
| 154 |
+
B, N, _C = x.shape
|
| 155 |
+
x = x.permute(0, 2, 1).reshape(B, _C, H, W).contiguous()
|
| 156 |
+
residual = self.residual(x)
|
| 157 |
+
x = self.channel_embed(x)
|
| 158 |
+
out = self.norm(residual + x)
|
| 159 |
+
return out
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class FeatureFusionModule(nn.Module):
|
| 163 |
+
def __init__(self, dim, reduction=1, num_heads=None, norm_layer=nn.BatchNorm2d):
|
| 164 |
+
super().__init__()
|
| 165 |
+
self.cross = CrossPath(dim=dim, reduction=reduction, num_heads=num_heads)
|
| 166 |
+
self.channel_emb = ChannelEmbed(in_channels=dim*2, out_channels=dim, reduction=reduction, norm_layer=norm_layer)
|
| 167 |
+
self.apply(self._init_weights)
|
| 168 |
+
|
| 169 |
+
def _init_weights(self, m):
|
| 170 |
+
if isinstance(m, nn.Linear):
|
| 171 |
+
trunc_normal_(m.weight, std=.02)
|
| 172 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 173 |
+
nn.init.constant_(m.bias, 0)
|
| 174 |
+
elif isinstance(m, nn.LayerNorm):
|
| 175 |
+
nn.init.constant_(m.bias, 0)
|
| 176 |
+
nn.init.constant_(m.weight, 1.0)
|
| 177 |
+
elif isinstance(m, nn.Conv2d):
|
| 178 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 179 |
+
fan_out //= m.groups
|
| 180 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 181 |
+
if m.bias is not None:
|
| 182 |
+
m.bias.data.zero_()
|
| 183 |
+
|
| 184 |
+
def forward(self, x1, x2):
|
| 185 |
+
B, C, H, W = x1.shape
|
| 186 |
+
x1 = x1.flatten(2).transpose(1, 2)
|
| 187 |
+
x2 = x2.flatten(2).transpose(1, 2)
|
| 188 |
+
x1, x2 = self.cross(x1, x2)
|
| 189 |
+
merge = torch.cat((x1, x2), dim=-1)
|
| 190 |
+
merge = self.channel_emb(merge, H, W)
|
| 191 |
+
|
| 192 |
+
return merge
|
| 193 |
+
|
trufor_native/models/cmx/utils/__init__.py
ADDED
|
File without changes
|
trufor_native/models/cmx/utils/init_func.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# encoding: utf-8
|
| 3 |
+
# @Time : 2018/9/28 下午12:13
|
| 4 |
+
# @Author : yuchangqian
|
| 5 |
+
# @Contact : changqian_yu@163.com
|
| 6 |
+
# @File : init_func.py.py
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
|
| 10 |
+
def __init_weight(feature, conv_init, norm_layer, bn_eps, bn_momentum,
|
| 11 |
+
**kwargs):
|
| 12 |
+
for name, m in feature.named_modules():
|
| 13 |
+
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
| 14 |
+
conv_init(m.weight, **kwargs)
|
| 15 |
+
elif isinstance(m, norm_layer):
|
| 16 |
+
m.eps = bn_eps
|
| 17 |
+
m.momentum = bn_momentum
|
| 18 |
+
nn.init.constant_(m.weight, 1)
|
| 19 |
+
nn.init.constant_(m.bias, 0)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def init_weight(module_list, conv_init, norm_layer, bn_eps, bn_momentum,
|
| 23 |
+
**kwargs):
|
| 24 |
+
if isinstance(module_list, list):
|
| 25 |
+
for feature in module_list:
|
| 26 |
+
__init_weight(feature, conv_init, norm_layer, bn_eps, bn_momentum,
|
| 27 |
+
**kwargs)
|
| 28 |
+
else:
|
| 29 |
+
__init_weight(module_list, conv_init, norm_layer, bn_eps, bn_momentum,
|
| 30 |
+
**kwargs)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def group_weight(weight_group, module, norm_layer, lr):
|
| 34 |
+
group_decay = []
|
| 35 |
+
group_no_decay = []
|
| 36 |
+
count = 0
|
| 37 |
+
for m in module.modules():
|
| 38 |
+
if isinstance(m, nn.Linear):
|
| 39 |
+
group_decay.append(m.weight)
|
| 40 |
+
if m.bias is not None:
|
| 41 |
+
group_no_decay.append(m.bias)
|
| 42 |
+
elif isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d, nn.ConvTranspose3d)):
|
| 43 |
+
group_decay.append(m.weight)
|
| 44 |
+
if m.bias is not None:
|
| 45 |
+
group_no_decay.append(m.bias)
|
| 46 |
+
elif isinstance(m, norm_layer) or isinstance(m, nn.BatchNorm1d) or isinstance(m, nn.BatchNorm2d) \
|
| 47 |
+
or isinstance(m, nn.BatchNorm3d) or isinstance(m, nn.GroupNorm) or isinstance(m, nn.LayerNorm):
|
| 48 |
+
if m.weight is not None:
|
| 49 |
+
group_no_decay.append(m.weight)
|
| 50 |
+
if m.bias is not None:
|
| 51 |
+
group_no_decay.append(m.bias)
|
| 52 |
+
elif isinstance(m, nn.Parameter):
|
| 53 |
+
group_decay.append(m)
|
| 54 |
+
|
| 55 |
+
assert len(list(module.parameters())) >= len(group_decay) + len(group_no_decay)
|
| 56 |
+
weight_group.append(dict(params=group_decay, lr=lr))
|
| 57 |
+
weight_group.append(dict(params=group_no_decay, weight_decay=.0, lr=lr))
|
| 58 |
+
return weight_group
|
trufor_runner.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
import shutil
|
| 6 |
+
import subprocess
|
| 7 |
+
import tempfile
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import Dict, Optional
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
from PIL import Image
|
| 14 |
+
|
| 15 |
+
LOGGER = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class TruForUnavailableError(RuntimeError):
|
| 19 |
+
"""Raised when the TruFor assets are missing or inference fails."""
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@dataclass
|
| 23 |
+
class TruForResult:
|
| 24 |
+
score: Optional[float]
|
| 25 |
+
map_overlay: Optional[Image.Image]
|
| 26 |
+
confidence_overlay: Optional[Image.Image]
|
| 27 |
+
raw_scores: Dict[str, float]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class TruForEngine:
|
| 31 |
+
"""Wrapper that executes TruFor inference through docker or python backends."""
|
| 32 |
+
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
repo_root: Optional[Path] = None,
|
| 36 |
+
weights_path: Optional[Path] = None,
|
| 37 |
+
device: str = "cpu",
|
| 38 |
+
) -> None:
|
| 39 |
+
self.base_dir = Path(__file__).resolve().parent
|
| 40 |
+
self.device = device
|
| 41 |
+
self.backend: Optional[str] = None
|
| 42 |
+
self.status_message = "TruFor backend not initialized."
|
| 43 |
+
|
| 44 |
+
backend_pref = os.environ.get("TRUFOR_BACKEND", "auto").lower()
|
| 45 |
+
if backend_pref not in {"auto", "native", "docker"}:
|
| 46 |
+
backend_pref = "auto"
|
| 47 |
+
|
| 48 |
+
errors: list[str] = []
|
| 49 |
+
|
| 50 |
+
if backend_pref in {"auto", "native"}:
|
| 51 |
+
try:
|
| 52 |
+
self._configure_native_backend(repo_root, weights_path)
|
| 53 |
+
self.backend = "native"
|
| 54 |
+
self.status_message = "TruFor ready (bundled python backend)."
|
| 55 |
+
except TruForUnavailableError as exc:
|
| 56 |
+
errors.append(f"Native backend unavailable: {exc}")
|
| 57 |
+
if backend_pref == "native":
|
| 58 |
+
raise
|
| 59 |
+
|
| 60 |
+
if self.backend is None and backend_pref in {"auto", "docker"}:
|
| 61 |
+
try:
|
| 62 |
+
self._configure_docker_backend()
|
| 63 |
+
self.backend = "docker"
|
| 64 |
+
self.status_message = f'TruFor ready (docker image "{self.docker_image}").'
|
| 65 |
+
except TruForUnavailableError as exc:
|
| 66 |
+
errors.append(f"Docker backend unavailable: {exc}")
|
| 67 |
+
if backend_pref == "docker":
|
| 68 |
+
raise
|
| 69 |
+
|
| 70 |
+
if self.backend is None:
|
| 71 |
+
raise TruForUnavailableError(" | ".join(errors) if errors else "TruFor backend unavailable.")
|
| 72 |
+
|
| 73 |
+
# ------------------------------------------------------------------
|
| 74 |
+
# Backend configuration helpers
|
| 75 |
+
# ------------------------------------------------------------------
|
| 76 |
+
def _configure_docker_backend(self) -> None:
|
| 77 |
+
if shutil.which("docker") is None:
|
| 78 |
+
raise TruForUnavailableError("docker CLI not found on PATH.")
|
| 79 |
+
|
| 80 |
+
test_docker_dir = self.base_dir / "test_docker"
|
| 81 |
+
if not test_docker_dir.exists():
|
| 82 |
+
raise TruForUnavailableError("test_docker directory not found in workspace.")
|
| 83 |
+
|
| 84 |
+
image_name = os.environ.get("TRUFOR_DOCKER_IMAGE", "trufor")
|
| 85 |
+
inspect = subprocess.run(
|
| 86 |
+
["docker", "image", "inspect", image_name],
|
| 87 |
+
stdout=subprocess.PIPE,
|
| 88 |
+
stderr=subprocess.PIPE,
|
| 89 |
+
text=True,
|
| 90 |
+
check=False,
|
| 91 |
+
)
|
| 92 |
+
if inspect.returncode != 0:
|
| 93 |
+
raise TruForUnavailableError(
|
| 94 |
+
f'Docker image "{image_name}" not found. Build it with "bash test_docker/docker_build.sh".'
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
weights_candidate = Path(os.environ.get("TRUFOR_DOCKER_WEIGHTS", self.base_dir / "weights")).expanduser()
|
| 98 |
+
weight_file = weights_candidate / "trufor.pth.tar"
|
| 99 |
+
self.docker_weights_dir: Optional[Path]
|
| 100 |
+
self.docker_weights_dir = weight_file.parent if weight_file.exists() else None
|
| 101 |
+
|
| 102 |
+
self.docker_runtime = os.environ.get("TRUFOR_DOCKER_RUNTIME")
|
| 103 |
+
gpu_pref = os.environ.get("TRUFOR_DOCKER_GPU")
|
| 104 |
+
if gpu_pref is None:
|
| 105 |
+
gpu_pref = "-1" if self.device == "cpu" else "0"
|
| 106 |
+
self.docker_gpu = gpu_pref
|
| 107 |
+
|
| 108 |
+
gpus_arg = os.environ.get("TRUFOR_DOCKER_GPUS_ARG")
|
| 109 |
+
if not gpus_arg and gpu_pref not in {"-1", "cpu", "none"}:
|
| 110 |
+
gpus_arg = "all"
|
| 111 |
+
self.docker_gpus_arg = gpus_arg
|
| 112 |
+
|
| 113 |
+
self.docker_image = image_name
|
| 114 |
+
|
| 115 |
+
def _configure_native_backend(self, _repo_root: Optional[Path], weights_path: Optional[Path]) -> None:
|
| 116 |
+
try:
|
| 117 |
+
from trufor_native import TruForBundledModel
|
| 118 |
+
except ImportError as exc: # pragma: no cover - packaging guard
|
| 119 |
+
raise TruForUnavailableError("Bundled TruFor modules are not available.") from exc
|
| 120 |
+
|
| 121 |
+
default_weights = self.base_dir / "weights" / "trufor.pth.tar"
|
| 122 |
+
weight_candidate = weights_path or os.environ.get("TRUFOR_WEIGHTS") or default_weights
|
| 123 |
+
weight_path = Path(weight_candidate).expanduser()
|
| 124 |
+
if not weight_path.exists():
|
| 125 |
+
raise TruForUnavailableError(
|
| 126 |
+
f"TruFor weights missing at {weight_path}. Place trufor.pth.tar under weights/ or set TRUFOR_WEIGHTS."
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
try:
|
| 130 |
+
self.native_model = TruForBundledModel(weight_path, device=self.device)
|
| 131 |
+
except Exception as exc: # pragma: no cover - propagate detailed failure
|
| 132 |
+
raise TruForUnavailableError(f"Failed to initialise bundled TruFor model: {exc}") from exc
|
| 133 |
+
|
| 134 |
+
# ------------------------------------------------------------------
|
| 135 |
+
# Public API
|
| 136 |
+
# ------------------------------------------------------------------
|
| 137 |
+
def infer(self, image: Image.Image) -> TruForResult:
|
| 138 |
+
if image is None:
|
| 139 |
+
raise TruForUnavailableError("No image supplied to TruFor inference.")
|
| 140 |
+
|
| 141 |
+
if self.backend == "docker":
|
| 142 |
+
return self._infer_docker(image)
|
| 143 |
+
if self.backend == "native":
|
| 144 |
+
return self._infer_native(image)
|
| 145 |
+
|
| 146 |
+
raise TruForUnavailableError("TruFor backend not configured.")
|
| 147 |
+
|
| 148 |
+
# ------------------------------------------------------------------
|
| 149 |
+
# Inference helpers
|
| 150 |
+
# ------------------------------------------------------------------
|
| 151 |
+
def _infer_native(self, image: Image.Image) -> TruForResult:
|
| 152 |
+
outputs = self.native_model.predict(image)
|
| 153 |
+
|
| 154 |
+
overlays: Dict[str, Optional[Image.Image]] = {"map": None, "conf": None}
|
| 155 |
+
try:
|
| 156 |
+
overlays["map"] = self._apply_heatmap(image, outputs.tamper_map)
|
| 157 |
+
except Exception as exc: # pragma: no cover - visualisation fallback
|
| 158 |
+
LOGGER.debug("Failed to build tamper heatmap: %s", exc)
|
| 159 |
+
|
| 160 |
+
if outputs.confidence_map is not None:
|
| 161 |
+
try:
|
| 162 |
+
overlays["conf"] = self._apply_heatmap(image, outputs.confidence_map)
|
| 163 |
+
except Exception as exc: # pragma: no cover
|
| 164 |
+
LOGGER.debug("Failed to build confidence heatmap: %s", exc)
|
| 165 |
+
|
| 166 |
+
raw_scores: Dict[str, float] = {
|
| 167 |
+
"tamper_mean": float(np.mean(outputs.tamper_map)),
|
| 168 |
+
"tamper_max": float(np.max(outputs.tamper_map)),
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
if outputs.confidence_map is not None:
|
| 172 |
+
raw_scores["confidence_mean"] = float(np.mean(outputs.confidence_map))
|
| 173 |
+
raw_scores["confidence_max"] = float(np.max(outputs.confidence_map))
|
| 174 |
+
|
| 175 |
+
if outputs.detection_score is not None:
|
| 176 |
+
raw_scores["tamper_score"] = float(outputs.detection_score)
|
| 177 |
+
|
| 178 |
+
return TruForResult(
|
| 179 |
+
score=outputs.detection_score,
|
| 180 |
+
map_overlay=overlays["map"],
|
| 181 |
+
confidence_overlay=overlays["conf"],
|
| 182 |
+
raw_scores=raw_scores,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
def _infer_docker(self, image: Image.Image) -> TruForResult:
|
| 186 |
+
with tempfile.TemporaryDirectory(prefix="trufor_docker_") as workdir:
|
| 187 |
+
workdir_path = Path(workdir)
|
| 188 |
+
input_dir = workdir_path / "data"
|
| 189 |
+
output_dir = workdir_path / "data_out"
|
| 190 |
+
input_dir.mkdir(parents=True, exist_ok=True)
|
| 191 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 192 |
+
input_path = input_dir / "input.png"
|
| 193 |
+
image.convert("RGB").save(input_path)
|
| 194 |
+
|
| 195 |
+
cmd = ["docker", "run", "--rm"]
|
| 196 |
+
if self.docker_runtime:
|
| 197 |
+
cmd.extend(["--runtime", self.docker_runtime])
|
| 198 |
+
|
| 199 |
+
gpu_flag = str(self.docker_gpu)
|
| 200 |
+
if gpu_flag.lower() in {"cpu", "none"}:
|
| 201 |
+
gpu_flag = "-1"
|
| 202 |
+
if gpu_flag != "-1" and self.docker_gpus_arg:
|
| 203 |
+
cmd.extend(["--gpus", self.docker_gpus_arg])
|
| 204 |
+
|
| 205 |
+
cmd.extend([
|
| 206 |
+
"-v",
|
| 207 |
+
f"{input_dir.resolve()}:/data:ro",
|
| 208 |
+
"-v",
|
| 209 |
+
f"{output_dir.resolve()}:/data_out:rw",
|
| 210 |
+
])
|
| 211 |
+
|
| 212 |
+
if self.docker_weights_dir is not None:
|
| 213 |
+
cmd.extend([
|
| 214 |
+
"-v",
|
| 215 |
+
f"{self.docker_weights_dir.resolve()}:/weights:ro",
|
| 216 |
+
])
|
| 217 |
+
|
| 218 |
+
cmd.append(self.docker_image)
|
| 219 |
+
cmd.extend(
|
| 220 |
+
[
|
| 221 |
+
"-gpu",
|
| 222 |
+
gpu_flag,
|
| 223 |
+
"-in",
|
| 224 |
+
"data/input.png",
|
| 225 |
+
"-out",
|
| 226 |
+
"data_out",
|
| 227 |
+
]
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
LOGGER.debug("Running TruFor docker command: %s", " ".join(cmd))
|
| 231 |
+
result = subprocess.run(
|
| 232 |
+
cmd,
|
| 233 |
+
text=True,
|
| 234 |
+
capture_output=True,
|
| 235 |
+
check=False,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
return self._process_results(result, output_dir, image)
|
| 239 |
+
|
| 240 |
+
# ------------------------------------------------------------------
|
| 241 |
+
# Result parsing
|
| 242 |
+
# ------------------------------------------------------------------
|
| 243 |
+
def _process_results(self, run_result: subprocess.CompletedProcess[str], output_dir: Path, image: Image.Image) -> TruForResult:
|
| 244 |
+
if run_result.returncode != 0:
|
| 245 |
+
stderr_tail = "\n".join(run_result.stderr.strip().splitlines()[-8:]) if run_result.stderr else ""
|
| 246 |
+
LOGGER.error("TruFor stderr: %s", stderr_tail)
|
| 247 |
+
raise TruForUnavailableError(
|
| 248 |
+
"TruFor inference failed. Inspect dependencies and stderr:\n" + stderr_tail
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
npz_files = list(output_dir.rglob("*.npz"))
|
| 252 |
+
if not npz_files:
|
| 253 |
+
stdout_tail = "\n".join(run_result.stdout.strip().splitlines()[-8:]) if run_result.stdout else ""
|
| 254 |
+
raise TruForUnavailableError(
|
| 255 |
+
"TruFor inference produced no output files. Stdout tail:\n" + stdout_tail
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
data = np.load(npz_files[0], allow_pickle=False)
|
| 259 |
+
tamper_map = data.get("map")
|
| 260 |
+
conf_map = data.get("conf")
|
| 261 |
+
score = float(data["score"]) if "score" in data.files else None
|
| 262 |
+
|
| 263 |
+
overlays: Dict[str, Optional[Image.Image]] = {"map": None, "conf": None}
|
| 264 |
+
try:
|
| 265 |
+
overlays["map"] = self._apply_heatmap(image, tamper_map) if tamper_map is not None else None
|
| 266 |
+
except Exception as exc: # pragma: no cover
|
| 267 |
+
LOGGER.debug("Failed to build tamper heatmap: %s", exc)
|
| 268 |
+
|
| 269 |
+
try:
|
| 270 |
+
overlays["conf"] = self._apply_heatmap(image, conf_map) if conf_map is not None else None
|
| 271 |
+
except Exception as exc: # pragma: no cover
|
| 272 |
+
LOGGER.debug("Failed to build confidence heatmap: %s", exc)
|
| 273 |
+
|
| 274 |
+
raw_scores: Dict[str, float] = {}
|
| 275 |
+
if score is not None:
|
| 276 |
+
raw_scores["tamper_score"] = score
|
| 277 |
+
if tamper_map is not None:
|
| 278 |
+
raw_scores["tamper_mean"] = float(np.mean(tamper_map))
|
| 279 |
+
raw_scores["tamper_max"] = float(np.max(tamper_map))
|
| 280 |
+
if conf_map is not None:
|
| 281 |
+
raw_scores["confidence_mean"] = float(np.mean(conf_map))
|
| 282 |
+
raw_scores["confidence_max"] = float(np.max(conf_map))
|
| 283 |
+
|
| 284 |
+
return TruForResult(
|
| 285 |
+
score=score,
|
| 286 |
+
map_overlay=overlays["map"],
|
| 287 |
+
confidence_overlay=overlays["conf"],
|
| 288 |
+
raw_scores=raw_scores,
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
@staticmethod
|
| 292 |
+
def _apply_heatmap(base: Image.Image, data: np.ndarray, alpha: float = 0.55) -> Image.Image:
|
| 293 |
+
base_rgb = base.convert("RGB")
|
| 294 |
+
if data is None or data.ndim != 2:
|
| 295 |
+
raise ValueError("Expected a 2D map from TruFor")
|
| 296 |
+
|
| 297 |
+
data = np.asarray(data, dtype=np.float32)
|
| 298 |
+
if np.allclose(data.max(), data.min()):
|
| 299 |
+
norm = np.zeros_like(data, dtype=np.float32)
|
| 300 |
+
else:
|
| 301 |
+
norm = (data - data.min()) / (data.max() - data.min())
|
| 302 |
+
|
| 303 |
+
heat = np.zeros((*norm.shape, 3), dtype=np.uint8)
|
| 304 |
+
heat[..., 0] = np.clip(norm * 255, 0, 255).astype(np.uint8)
|
| 305 |
+
heat[..., 1] = np.clip(np.sqrt(norm) * 255, 0, 255).astype(np.uint8)
|
| 306 |
+
heat[..., 2] = np.clip((1.0 - norm) * 255, 0, 255).astype(np.uint8)
|
| 307 |
+
|
| 308 |
+
heat_img = Image.fromarray(heat, mode="RGB").resize(base_rgb.size, Image.BILINEAR)
|
| 309 |
+
return Image.blend(base_rgb, heat_img, alpha)
|