Jayashree Sridhar commited on
Commit
c5514db
·
1 Parent(s): 3019028

included privateaatr in all tools

Browse files
agents/tools/knowledge_tools.py CHANGED
@@ -1,6 +1,6 @@
1
  #from .base_tool import BaseTool
2
  from utils.knowledge_base import KnowledgeBase
3
- #from pydantic import BaseModel, PrivateAttr
4
  from crewai.tools import BaseTool
5
 
6
 
@@ -9,10 +9,10 @@ class SearchKnowledgeTool(BaseTool):
9
  name: str = "search_knowledge"
10
  description: str = "Search self-help or spiritual wisdom."
11
  model_config = {"arbitrary_types_allowed": True}
12
- #_kp: KnowledgeBase = PrivateAttr()
13
  def __init__(self, config=None):
14
  super().__init__()
15
- self.kb = KnowledgeBase(config)
16
  def _run(self, query: str, k: int = 5):
17
  return self.kb.search(query, k=k) if self.kb.is_initialized() else \
18
  [{"text": "General wisdom", "score": 1.0}]
 
1
  #from .base_tool import BaseTool
2
  from utils.knowledge_base import KnowledgeBase
3
+ from pydantic import PrivateAttr
4
  from crewai.tools import BaseTool
5
 
6
 
 
9
  name: str = "search_knowledge"
10
  description: str = "Search self-help or spiritual wisdom."
11
  model_config = {"arbitrary_types_allowed": True}
12
+ _kp: KnowledgeBase = PrivateAttr()
13
  def __init__(self, config=None):
14
  super().__init__()
15
+ self._kb = KnowledgeBase(config)
16
  def _run(self, query: str, k: int = 5):
17
  return self.kb.search(query, k=k) if self.kb.is_initialized() else \
18
  [{"text": "General wisdom", "score": 1.0}]
agents/tools/llm_tools.py CHANGED
@@ -1,6 +1,6 @@
1
  #from .base_tool import BaseTool
2
  from models.tinygpt2_model import TinyGPT2Model
3
- #from pydantic import BaseModel, PrivateAttr
4
  from crewai.tools import BaseTool
5
 
6
 
@@ -9,10 +9,10 @@ class MistralChatTool(BaseTool):
9
  name: str = "mistral_chat"
10
  description: str = "Generate an empathetic AI chat response."
11
  model_config = {"arbitrary_types_allowed": True}
12
- #_model: TinyGPT2Model = PrivateAttr()
13
  def __init__(self, config=None):
14
  super().__init__()
15
- self.model = TinyGPT2Model()
16
  def _run(self, prompt: str, context: dict = None):
17
  msg = f"Context: {context}\nUser: {prompt}" if context else prompt
18
  return self.model.generate(msg)
@@ -21,10 +21,10 @@ class GenerateAdviceTool(BaseTool):
21
  name: str = "generate_advice"
22
  description: str = "Generate personalized advice."
23
  model_config = {"arbitrary_types_allowed": True}
24
- #_model: TinyGPT2Model = PrivateAttr()
25
  def __init__(self, config=None):
26
  super().__init__()
27
- self.model = TinyGPT2Model()
28
  def _run(self, user_analysis: dict, wisdom_quotes: list):
29
  prompt = f"Advice for: {user_analysis}, with wisdom: {wisdom_quotes}"
30
  return self.model.generate(prompt, max_length=300)
@@ -33,10 +33,10 @@ class SummarizeConversationTool(BaseTool):
33
  name: str = "summarize_conversation"
34
  description: str = "Summarize chat with insights and next steps."
35
  model_config = {"arbitrary_types_allowed": True}
36
- #_model: TinyGPT2Model = PrivateAttr()
37
  def __init__(self, config=None):
38
  super().__init__()
39
- self.model = TinyGPT2Model()
40
  def _run(self, conversation: list):
41
  prompt = f"Summarize: {conversation}"
42
  return self.model.generate(prompt, max_length=200)
 
1
  #from .base_tool import BaseTool
2
  from models.tinygpt2_model import TinyGPT2Model
3
+ from pydantic import PrivateAttr
4
  from crewai.tools import BaseTool
5
 
6
 
 
9
  name: str = "mistral_chat"
10
  description: str = "Generate an empathetic AI chat response."
11
  model_config = {"arbitrary_types_allowed": True}
12
+ _model: TinyGPT2Model = PrivateAttr()
13
  def __init__(self, config=None):
14
  super().__init__()
15
+ self._model = TinyGPT2Model()
16
  def _run(self, prompt: str, context: dict = None):
17
  msg = f"Context: {context}\nUser: {prompt}" if context else prompt
18
  return self.model.generate(msg)
 
21
  name: str = "generate_advice"
22
  description: str = "Generate personalized advice."
23
  model_config = {"arbitrary_types_allowed": True}
24
+ _model: TinyGPT2Model = PrivateAttr()
25
  def __init__(self, config=None):
26
  super().__init__()
27
+ self._model = TinyGPT2Model()
28
  def _run(self, user_analysis: dict, wisdom_quotes: list):
29
  prompt = f"Advice for: {user_analysis}, with wisdom: {wisdom_quotes}"
30
  return self.model.generate(prompt, max_length=300)
 
33
  name: str = "summarize_conversation"
34
  description: str = "Summarize chat with insights and next steps."
35
  model_config = {"arbitrary_types_allowed": True}
36
+ _model: TinyGPT2Model = PrivateAttr()
37
  def __init__(self, config=None):
38
  super().__init__()
39
+ self._model = TinyGPT2Model()
40
  def _run(self, conversation: list):
41
  prompt = f"Summarize: {conversation}"
42
  return self.model.generate(prompt, max_length=200)
agents/tools/validation_tools.py CHANGED
@@ -8,7 +8,7 @@ from dataclasses import dataclass
8
  import json
9
  from transformers import pipeline
10
  import torch
11
- #from pydantic import BaseModel, PrivateAttr
12
  from crewai.tools import BaseTool
13
  #from .base_tool import BaseTool
14
 
@@ -408,10 +408,10 @@ class ValidateResponseTool(BaseTool):
408
  name: str = "validate_response"
409
  description: str = "Validates safety and helpfulness."
410
  model_config = {"arbitrary_types_allowed": True}
411
- #_config: object = PrivateAttr()
412
  def __init__(self, config=None, **data):
413
  super().__init__(**data)
414
- self.config = config
415
  # ... any required initialization ...
416
  def _run(self, response: str, context: dict = None):
417
  # Place your actual validation logic here, include dummy for illustration
 
8
  import json
9
  from transformers import pipeline
10
  import torch
11
+ from pydantic import PrivateAttr
12
  from crewai.tools import BaseTool
13
  #from .base_tool import BaseTool
14
 
 
408
  name: str = "validate_response"
409
  description: str = "Validates safety and helpfulness."
410
  model_config = {"arbitrary_types_allowed": True}
411
+ _config: object = PrivateAttr()
412
  def __init__(self, config=None, **data):
413
  super().__init__(**data)
414
+ self._config = config
415
  # ... any required initialization ...
416
  def _run(self, response: str, context: dict = None):
417
  # Place your actual validation logic here, include dummy for illustration