Jayashree Sridhar
commited on
Commit
·
e93f267
1
Parent(s):
292f6f6
Added TinyGPT2Model file
Browse files- models/tinygpt2_model.py +99 -0
models/tinygpt2_model.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
TinyGPT2 Model Wrapper for easy integration (CPU-friendly)
|
| 3 |
+
"""
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 8 |
+
class TinyGPT2Model:
|
| 9 |
+
"""
|
| 10 |
+
Wrapper for sshleifer/tiny-gpt2 model with caching and optimization
|
| 11 |
+
Suitable for CPU-only Hugging Face Spaces
|
| 12 |
+
"""
|
| 13 |
+
_instance = None
|
| 14 |
+
_model = None
|
| 15 |
+
_tokenizer = None
|
| 16 |
+
|
| 17 |
+
def __new__(cls):
|
| 18 |
+
if cls._instance is None:
|
| 19 |
+
cls._instance = super().__new__(cls)
|
| 20 |
+
return cls._instance
|
| 21 |
+
|
| 22 |
+
def __init__(self):
|
| 23 |
+
if TinyGPT2Model._model is None:
|
| 24 |
+
self._initialize_model()
|
| 25 |
+
|
| 26 |
+
def _initialize_model(self):
|
| 27 |
+
"""Initialize Tiny-GPT2 model"""
|
| 28 |
+
print("Loading TinyGPT2 model...")
|
| 29 |
+
|
| 30 |
+
model_id = "sshleifer/tiny-gpt2"
|
| 31 |
+
|
| 32 |
+
# Load tokenizer (no need for token argument, model is public)
|
| 33 |
+
TinyGPT2Model._tokenizer = AutoTokenizer.from_pretrained(model_id,token=HUGGINGFACE_TOKEN)
|
| 34 |
+
|
| 35 |
+
# Load model (no quantization, pure CPU)
|
| 36 |
+
TinyGPT2Model._model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
model_id,token=HUGGINGFACE_TOKEN,
|
| 38 |
+
torch_dtype=torch.float32 # Safe for CPU only
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
print("TinyGPT2 model loaded successfully!")
|
| 42 |
+
|
| 43 |
+
def generate(
|
| 44 |
+
self,
|
| 45 |
+
prompt: str,
|
| 46 |
+
max_length: int = 64,
|
| 47 |
+
temperature: float = 0.7,
|
| 48 |
+
top_p: float = 0.95
|
| 49 |
+
) -> str:
|
| 50 |
+
"""Generate response from TinyGPT2"""
|
| 51 |
+
|
| 52 |
+
# For TinyGPT2, no special prompt formatting needed
|
| 53 |
+
formatted_prompt = prompt
|
| 54 |
+
|
| 55 |
+
# Tokenize
|
| 56 |
+
inputs = TinyGPT2Model._tokenizer(
|
| 57 |
+
formatted_prompt,
|
| 58 |
+
return_tensors="pt",
|
| 59 |
+
truncation=True,
|
| 60 |
+
max_length=256
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Move to CPU (optional, for explicitness)
|
| 64 |
+
inputs = {k: v.cpu() for k, v in inputs.items()}
|
| 65 |
+
|
| 66 |
+
# Generate on CPU
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
outputs = TinyGPT2Model._model.generate(
|
| 69 |
+
**inputs,
|
| 70 |
+
max_new_tokens=max_length,
|
| 71 |
+
temperature=temperature,
|
| 72 |
+
top_p=top_p,
|
| 73 |
+
do_sample=True,
|
| 74 |
+
pad_token_id=TinyGPT2Model._tokenizer.eos_token_id
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Decode only the newly generated tokens (after the prompt)
|
| 78 |
+
response = TinyGPT2Model._tokenizer.decode(
|
| 79 |
+
outputs[0][inputs['input_ids'].shape[1]:],
|
| 80 |
+
skip_special_tokens=True
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
return response.strip()
|
| 84 |
+
|
| 85 |
+
def generate_embedding(self, text: str) -> torch.Tensor:
|
| 86 |
+
"""Generate embeddings for text using last hidden state"""
|
| 87 |
+
inputs = TinyGPT2Model._tokenizer(
|
| 88 |
+
text,
|
| 89 |
+
return_tensors="pt",
|
| 90 |
+
truncation=True,
|
| 91 |
+
max_length=256
|
| 92 |
+
)
|
| 93 |
+
inputs = {k: v.cpu() for k, v in inputs.items()}
|
| 94 |
+
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
outputs = TinyGPT2Model._model(**inputs, output_hidden_states=True)
|
| 97 |
+
embeddings = outputs.hidden_states[-1].mean(dim=1)
|
| 98 |
+
|
| 99 |
+
return embeddings
|