Spaces:
Paused
Paused
Upload 5 files
Browse files- camera_utils.py +33 -0
- config.py +16 -0
- model_loader.py +330 -0
- test_data.py +128 -0
- video_processor.py +118 -0
camera_utils.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
class Camera(object):
|
| 4 |
+
def __init__(self, c2w):
|
| 5 |
+
c2w_mat = np.array(c2w).reshape(4, 4)
|
| 6 |
+
self.c2w_mat = c2w_mat
|
| 7 |
+
self.w2c_mat = np.linalg.inv(c2w_mat)
|
| 8 |
+
|
| 9 |
+
def parse_matrix(matrix_str):
|
| 10 |
+
"""Parse camera matrix string from JSON format"""
|
| 11 |
+
rows = matrix_str.strip().split('] [')
|
| 12 |
+
matrix = []
|
| 13 |
+
for row in rows:
|
| 14 |
+
row = row.replace('[', '').replace(']', '')
|
| 15 |
+
matrix.append(list(map(float, row.split())))
|
| 16 |
+
return np.array(matrix)
|
| 17 |
+
|
| 18 |
+
def get_relative_pose(cam_params):
|
| 19 |
+
"""Calculate relative camera poses"""
|
| 20 |
+
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
|
| 21 |
+
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
|
| 22 |
+
|
| 23 |
+
cam_to_origin = 0
|
| 24 |
+
target_cam_c2w = np.array([
|
| 25 |
+
[1, 0, 0, 0],
|
| 26 |
+
[0, 1, 0, -cam_to_origin],
|
| 27 |
+
[0, 0, 1, 0],
|
| 28 |
+
[0, 0, 0, 1]
|
| 29 |
+
])
|
| 30 |
+
abs2rel = target_cam_c2w @ abs_w2cs[0]
|
| 31 |
+
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
|
| 32 |
+
ret_poses = np.array(ret_poses, dtype=np.float32)
|
| 33 |
+
return ret_poses
|
config.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Camera transformation types
|
| 2 |
+
CAMERA_TRANSFORMATIONS = {
|
| 3 |
+
"1": "Pan Right",
|
| 4 |
+
"2": "Pan Left",
|
| 5 |
+
"3": "Tilt Up",
|
| 6 |
+
"4": "Tilt Down",
|
| 7 |
+
"5": "Zoom In",
|
| 8 |
+
"6": "Zoom Out",
|
| 9 |
+
"7": "Translate Up (with rotation)",
|
| 10 |
+
"8": "Translate Down (with rotation)",
|
| 11 |
+
"9": "Arc Left (with rotation)",
|
| 12 |
+
"10": "Arc Right (with rotation)"
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
# Define test data directory
|
| 16 |
+
TEST_DATA_DIR = "example_test_data"
|
model_loader.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import logging
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from diffsynth import ModelManager, WanVideoReCamMasterPipeline
|
| 8 |
+
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
# Get model storage path from environment variable or use default
|
| 12 |
+
MODELS_ROOT_DIR = os.environ.get("RECAMMASTER_MODELS_DIR", "/data/models")
|
| 13 |
+
logger.info(f"Using models root directory: {MODELS_ROOT_DIR}")
|
| 14 |
+
|
| 15 |
+
# Define model repositories and files
|
| 16 |
+
WAN21_REPO_ID = "Wan-AI/Wan2.1-T2V-1.3B"
|
| 17 |
+
WAN21_LOCAL_DIR = f"{MODELS_ROOT_DIR}/Wan-AI/Wan2.1-T2V-1.3B"
|
| 18 |
+
WAN21_FILES = [
|
| 19 |
+
"diffusion_pytorch_model.safetensors",
|
| 20 |
+
"models_t5_umt5-xxl-enc-bf16.pth",
|
| 21 |
+
"Wan2.1_VAE.pth"
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
# Define tokenizer files to download
|
| 25 |
+
UMT5_XXL_TOKENIZER_FILES = [
|
| 26 |
+
"google/umt5-xxl/special_tokens_map.json",
|
| 27 |
+
"google/umt5-xxl/spiece.model",
|
| 28 |
+
"google/umt5-xxl/tokenizer.json",
|
| 29 |
+
"google/umt5-xxl/tokenizer_config.json"
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
RECAMMASTER_REPO_ID = "KwaiVGI/ReCamMaster-Wan2.1"
|
| 33 |
+
RECAMMASTER_CHECKPOINT_FILE = "step20000.ckpt"
|
| 34 |
+
RECAMMASTER_LOCAL_DIR = f"{MODELS_ROOT_DIR}/ReCamMaster/checkpoints"
|
| 35 |
+
|
| 36 |
+
class ModelLoader:
|
| 37 |
+
def __init__(self):
|
| 38 |
+
self.model_manager = None
|
| 39 |
+
self.pipe = None
|
| 40 |
+
self.is_loaded = False
|
| 41 |
+
|
| 42 |
+
def download_umt5_xxl_tokenizer(self, progress_callback=None):
|
| 43 |
+
"""Download UMT5-XXL tokenizer files from HuggingFace"""
|
| 44 |
+
|
| 45 |
+
total_files = len(UMT5_XXL_TOKENIZER_FILES)
|
| 46 |
+
downloaded_paths = []
|
| 47 |
+
|
| 48 |
+
for i, file_path in enumerate(UMT5_XXL_TOKENIZER_FILES):
|
| 49 |
+
local_dir = f"{WAN21_LOCAL_DIR}/{os.path.dirname(file_path)}"
|
| 50 |
+
filename = os.path.basename(file_path)
|
| 51 |
+
full_local_path = f"{WAN21_LOCAL_DIR}/{file_path}"
|
| 52 |
+
|
| 53 |
+
# Update progress
|
| 54 |
+
if progress_callback:
|
| 55 |
+
progress_callback(i/total_files, desc=f"Checking tokenizer file {i+1}/{total_files}: {filename}")
|
| 56 |
+
|
| 57 |
+
# Check if already exists
|
| 58 |
+
if os.path.exists(full_local_path):
|
| 59 |
+
logger.info(f"✓ Tokenizer file {filename} already exists at {full_local_path}")
|
| 60 |
+
downloaded_paths.append(full_local_path)
|
| 61 |
+
continue
|
| 62 |
+
|
| 63 |
+
# Create directory if it doesn't exist
|
| 64 |
+
os.makedirs(local_dir, exist_ok=True)
|
| 65 |
+
|
| 66 |
+
# Download the file
|
| 67 |
+
logger.info(f"Downloading tokenizer file {filename} from {WAN21_REPO_ID}/{file_path}...")
|
| 68 |
+
|
| 69 |
+
if progress_callback:
|
| 70 |
+
progress_callback(i/total_files, desc=f"Downloading tokenizer file {i+1}/{total_files}: {filename}")
|
| 71 |
+
|
| 72 |
+
try:
|
| 73 |
+
# Download using huggingface_hub
|
| 74 |
+
downloaded_path = hf_hub_download(
|
| 75 |
+
repo_id=WAN21_REPO_ID,
|
| 76 |
+
filename=file_path,
|
| 77 |
+
local_dir=WAN21_LOCAL_DIR,
|
| 78 |
+
local_dir_use_symlinks=False
|
| 79 |
+
)
|
| 80 |
+
logger.info(f"✓ Successfully downloaded tokenizer file {filename} to {downloaded_path}!")
|
| 81 |
+
downloaded_paths.append(downloaded_path)
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"✗ Error downloading tokenizer file {filename}: {e}")
|
| 84 |
+
raise
|
| 85 |
+
|
| 86 |
+
if progress_callback:
|
| 87 |
+
progress_callback(1.0, desc=f"All tokenizer files downloaded successfully!")
|
| 88 |
+
|
| 89 |
+
return downloaded_paths
|
| 90 |
+
|
| 91 |
+
def download_wan21_models(self, progress_callback=None):
|
| 92 |
+
"""Download Wan2.1 model files from HuggingFace"""
|
| 93 |
+
|
| 94 |
+
total_files = len(WAN21_FILES)
|
| 95 |
+
downloaded_paths = []
|
| 96 |
+
|
| 97 |
+
# Create directory if it doesn't exist
|
| 98 |
+
Path(WAN21_LOCAL_DIR).mkdir(parents=True, exist_ok=True)
|
| 99 |
+
|
| 100 |
+
for i, filename in enumerate(WAN21_FILES):
|
| 101 |
+
local_path = Path(WAN21_LOCAL_DIR) / filename
|
| 102 |
+
|
| 103 |
+
# Update progress
|
| 104 |
+
if progress_callback:
|
| 105 |
+
progress_callback(i/total_files, desc=f"Checking Wan2.1 file {i+1}/{total_files}: {filename}")
|
| 106 |
+
|
| 107 |
+
# Check if already exists
|
| 108 |
+
if local_path.exists():
|
| 109 |
+
logger.info(f"✓ {filename} already exists at {local_path}")
|
| 110 |
+
downloaded_paths.append(str(local_path))
|
| 111 |
+
continue
|
| 112 |
+
|
| 113 |
+
# Download the file
|
| 114 |
+
logger.info(f"Downloading {filename} from {WAN21_REPO_ID}...")
|
| 115 |
+
|
| 116 |
+
if progress_callback:
|
| 117 |
+
progress_callback(i/total_files, desc=f"Downloading Wan2.1 file {i+1}/{total_files}: {filename}")
|
| 118 |
+
|
| 119 |
+
try:
|
| 120 |
+
# Download using huggingface_hub
|
| 121 |
+
downloaded_path = hf_hub_download(
|
| 122 |
+
repo_id=WAN21_REPO_ID,
|
| 123 |
+
filename=filename,
|
| 124 |
+
local_dir=WAN21_LOCAL_DIR,
|
| 125 |
+
local_dir_use_symlinks=False
|
| 126 |
+
)
|
| 127 |
+
logger.info(f"✓ Successfully downloaded {filename} to {downloaded_path}!")
|
| 128 |
+
downloaded_paths.append(downloaded_path)
|
| 129 |
+
except Exception as e:
|
| 130 |
+
logger.error(f"✗ Error downloading {filename}: {e}")
|
| 131 |
+
raise
|
| 132 |
+
|
| 133 |
+
if progress_callback:
|
| 134 |
+
progress_callback(1.0, desc=f"All Wan2.1 models downloaded successfully!")
|
| 135 |
+
|
| 136 |
+
return downloaded_paths
|
| 137 |
+
|
| 138 |
+
def download_recammaster_checkpoint(self, progress_callback=None):
|
| 139 |
+
"""Download ReCamMaster checkpoint from HuggingFace using huggingface_hub"""
|
| 140 |
+
checkpoint_path = Path(RECAMMASTER_LOCAL_DIR) / RECAMMASTER_CHECKPOINT_FILE
|
| 141 |
+
|
| 142 |
+
# Check if already exists
|
| 143 |
+
if checkpoint_path.exists():
|
| 144 |
+
logger.info(f"✓ ReCamMaster checkpoint already exists at {checkpoint_path}")
|
| 145 |
+
return checkpoint_path
|
| 146 |
+
|
| 147 |
+
# Create directory if it doesn't exist
|
| 148 |
+
Path(RECAMMASTER_LOCAL_DIR).mkdir(parents=True, exist_ok=True)
|
| 149 |
+
|
| 150 |
+
# Download the checkpoint
|
| 151 |
+
logger.info("Downloading ReCamMaster checkpoint from HuggingFace...")
|
| 152 |
+
logger.info(f"Repository: {RECAMMASTER_REPO_ID}")
|
| 153 |
+
logger.info(f"File: {RECAMMASTER_CHECKPOINT_FILE}")
|
| 154 |
+
logger.info(f"Destination: {checkpoint_path}")
|
| 155 |
+
|
| 156 |
+
if progress_callback:
|
| 157 |
+
progress_callback(0.0, desc=f"Downloading ReCamMaster checkpoint...")
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
# Download using huggingface_hub
|
| 161 |
+
downloaded_path = hf_hub_download(
|
| 162 |
+
repo_id=RECAMMASTER_REPO_ID,
|
| 163 |
+
filename=RECAMMASTER_CHECKPOINT_FILE,
|
| 164 |
+
local_dir=RECAMMASTER_LOCAL_DIR,
|
| 165 |
+
local_dir_use_symlinks=False
|
| 166 |
+
)
|
| 167 |
+
logger.info(f"✓ Successfully downloaded ReCamMaster checkpoint to {downloaded_path}!")
|
| 168 |
+
|
| 169 |
+
if progress_callback:
|
| 170 |
+
progress_callback(1.0, desc=f"ReCamMaster checkpoint downloaded successfully!")
|
| 171 |
+
|
| 172 |
+
return downloaded_path
|
| 173 |
+
except Exception as e:
|
| 174 |
+
logger.error(f"✗ Error downloading checkpoint: {e}")
|
| 175 |
+
raise
|
| 176 |
+
|
| 177 |
+
def create_symlink_for_tokenizer(self):
|
| 178 |
+
"""Create symlink for google/umt5-xxl to handle potential path issues"""
|
| 179 |
+
try:
|
| 180 |
+
google_dir = f"{MODELS_ROOT_DIR}/google"
|
| 181 |
+
if not os.path.exists(google_dir):
|
| 182 |
+
os.makedirs(google_dir, exist_ok=True)
|
| 183 |
+
|
| 184 |
+
umt5_xxl_symlink = f"{google_dir}/umt5-xxl"
|
| 185 |
+
umt5_xxl_source = f"{WAN21_LOCAL_DIR}/google/umt5-xxl"
|
| 186 |
+
|
| 187 |
+
# Create a symlink if it doesn't exist
|
| 188 |
+
if not os.path.exists(umt5_xxl_symlink) and os.path.exists(umt5_xxl_source):
|
| 189 |
+
if os.name == 'nt': # Windows
|
| 190 |
+
import ctypes
|
| 191 |
+
kdll = ctypes.windll.LoadLibrary("kernel32.dll")
|
| 192 |
+
kdll.CreateSymbolicLinkA(umt5_xxl_symlink.encode(), umt5_xxl_source.encode(), 1)
|
| 193 |
+
else: # Unix/Linux
|
| 194 |
+
os.symlink(umt5_xxl_source, umt5_xxl_symlink)
|
| 195 |
+
logger.info(f"Created symlink from {umt5_xxl_source} to {umt5_xxl_symlink}")
|
| 196 |
+
except Exception as e:
|
| 197 |
+
logger.warning(f"Could not create symlink for google/umt5-xxl: {str(e)}")
|
| 198 |
+
# This is a warning, not an error, as we'll try to proceed anyway
|
| 199 |
+
|
| 200 |
+
def load_models(self, progress_callback=None):
|
| 201 |
+
"""Load the ReCamMaster models"""
|
| 202 |
+
|
| 203 |
+
if self.is_loaded:
|
| 204 |
+
return "Models already loaded!"
|
| 205 |
+
|
| 206 |
+
try:
|
| 207 |
+
logger.info("Starting model loading...")
|
| 208 |
+
|
| 209 |
+
# Import test data creator
|
| 210 |
+
from test_data import create_test_data_structure
|
| 211 |
+
|
| 212 |
+
# First create the test data structure
|
| 213 |
+
if progress_callback:
|
| 214 |
+
progress_callback(0.05, desc="Setting up test data structure...")
|
| 215 |
+
|
| 216 |
+
try:
|
| 217 |
+
create_test_data_structure(progress_callback)
|
| 218 |
+
except Exception as e:
|
| 219 |
+
error_msg = f"Error creating test data structure: {str(e)}"
|
| 220 |
+
logger.error(error_msg)
|
| 221 |
+
return error_msg
|
| 222 |
+
|
| 223 |
+
# Second, ensure the checkpoint is downloaded
|
| 224 |
+
if progress_callback:
|
| 225 |
+
progress_callback(0.1, desc="Checking for ReCamMaster checkpoint...")
|
| 226 |
+
|
| 227 |
+
try:
|
| 228 |
+
ckpt_path = self.download_recammaster_checkpoint(progress_callback)
|
| 229 |
+
logger.info(f"Using checkpoint at {ckpt_path}")
|
| 230 |
+
except Exception as e:
|
| 231 |
+
error_msg = f"Error downloading ReCamMaster checkpoint: {str(e)}"
|
| 232 |
+
logger.error(error_msg)
|
| 233 |
+
return error_msg
|
| 234 |
+
|
| 235 |
+
# Third, download Wan2.1 models if needed
|
| 236 |
+
if progress_callback:
|
| 237 |
+
progress_callback(0.2, desc="Checking for Wan2.1 models...")
|
| 238 |
+
|
| 239 |
+
try:
|
| 240 |
+
wan21_paths = self.download_wan21_models(progress_callback)
|
| 241 |
+
logger.info(f"Using Wan2.1 models: {wan21_paths}")
|
| 242 |
+
except Exception as e:
|
| 243 |
+
error_msg = f"Error downloading Wan2.1 models: {str(e)}"
|
| 244 |
+
logger.error(error_msg)
|
| 245 |
+
return error_msg
|
| 246 |
+
|
| 247 |
+
# Fourth, download UMT5-XXL tokenizer files
|
| 248 |
+
if progress_callback:
|
| 249 |
+
progress_callback(0.3, desc="Checking for UMT5-XXL tokenizer files...")
|
| 250 |
+
|
| 251 |
+
try:
|
| 252 |
+
tokenizer_paths = self.download_umt5_xxl_tokenizer(progress_callback)
|
| 253 |
+
logger.info(f"Using UMT5-XXL tokenizer files: {tokenizer_paths}")
|
| 254 |
+
except Exception as e:
|
| 255 |
+
error_msg = f"Error downloading UMT5-XXL tokenizer files: {str(e)}"
|
| 256 |
+
logger.error(error_msg)
|
| 257 |
+
return error_msg
|
| 258 |
+
|
| 259 |
+
# Now, load the models
|
| 260 |
+
if progress_callback:
|
| 261 |
+
progress_callback(0.4, desc="Loading model manager...")
|
| 262 |
+
|
| 263 |
+
# Create symlink for tokenizer
|
| 264 |
+
self.create_symlink_for_tokenizer()
|
| 265 |
+
|
| 266 |
+
# Load Wan2.1 pre-trained models
|
| 267 |
+
self.model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu")
|
| 268 |
+
|
| 269 |
+
if progress_callback:
|
| 270 |
+
progress_callback(0.5, desc="Loading Wan2.1 models...")
|
| 271 |
+
|
| 272 |
+
# Build full paths for the model files
|
| 273 |
+
model_files = [f"{WAN21_LOCAL_DIR}/{filename}" for filename in WAN21_FILES]
|
| 274 |
+
|
| 275 |
+
for model_file in model_files:
|
| 276 |
+
logger.info(f"Loading model from: {model_file}")
|
| 277 |
+
if not os.path.exists(model_file):
|
| 278 |
+
error_msg = f"Error: Model file not found: {model_file}"
|
| 279 |
+
logger.error(error_msg)
|
| 280 |
+
return error_msg
|
| 281 |
+
|
| 282 |
+
# Set environment variable for transformers to find the tokenizer
|
| 283 |
+
os.environ["TRANSFORMERS_CACHE"] = MODELS_ROOT_DIR
|
| 284 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false" # Disable tokenizers parallelism warning
|
| 285 |
+
|
| 286 |
+
self.model_manager.load_models(model_files)
|
| 287 |
+
|
| 288 |
+
if progress_callback:
|
| 289 |
+
progress_callback(0.7, desc="Creating pipeline...")
|
| 290 |
+
|
| 291 |
+
self.pipe = WanVideoReCamMasterPipeline.from_model_manager(self.model_manager, device="cuda")
|
| 292 |
+
|
| 293 |
+
if progress_callback:
|
| 294 |
+
progress_callback(0.8, desc="Initializing ReCamMaster modules...")
|
| 295 |
+
|
| 296 |
+
# Initialize additional modules introduced in ReCamMaster
|
| 297 |
+
dim = self.pipe.dit.blocks[0].self_attn.q.weight.shape[0]
|
| 298 |
+
for block in self.pipe.dit.blocks:
|
| 299 |
+
block.cam_encoder = nn.Linear(12, dim)
|
| 300 |
+
block.projector = nn.Linear(dim, dim)
|
| 301 |
+
block.cam_encoder.weight.data.zero_()
|
| 302 |
+
block.cam_encoder.bias.data.zero_()
|
| 303 |
+
block.projector.weight = nn.Parameter(torch.eye(dim))
|
| 304 |
+
block.projector.bias = nn.Parameter(torch.zeros(dim))
|
| 305 |
+
|
| 306 |
+
if progress_callback:
|
| 307 |
+
progress_callback(0.9, desc="Loading ReCamMaster checkpoint...")
|
| 308 |
+
|
| 309 |
+
# Load ReCamMaster checkpoint
|
| 310 |
+
if not os.path.exists(ckpt_path):
|
| 311 |
+
error_msg = f"Error: ReCamMaster checkpoint not found at {ckpt_path} even after download attempt."
|
| 312 |
+
logger.error(error_msg)
|
| 313 |
+
return error_msg
|
| 314 |
+
|
| 315 |
+
state_dict = torch.load(ckpt_path, map_location="cpu")
|
| 316 |
+
self.pipe.dit.load_state_dict(state_dict, strict=True)
|
| 317 |
+
self.pipe.to("cuda")
|
| 318 |
+
self.pipe.to(dtype=torch.bfloat16)
|
| 319 |
+
|
| 320 |
+
self.is_loaded = True
|
| 321 |
+
|
| 322 |
+
if progress_callback:
|
| 323 |
+
progress_callback(1.0, desc="Models loaded successfully!")
|
| 324 |
+
|
| 325 |
+
logger.info("Models loaded successfully!")
|
| 326 |
+
return "Models loaded successfully!"
|
| 327 |
+
|
| 328 |
+
except Exception as e:
|
| 329 |
+
logger.error(f"Error loading models: {str(e)}")
|
| 330 |
+
return f"Error loading models: {str(e)}"
|
test_data.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import numpy as np
|
| 3 |
+
import logging
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from config import TEST_DATA_DIR
|
| 6 |
+
|
| 7 |
+
logger = logging.getLogger(__name__)
|
| 8 |
+
|
| 9 |
+
def create_test_data_structure(progress_callback=None):
|
| 10 |
+
"""Create sample camera extrinsics data for testing"""
|
| 11 |
+
|
| 12 |
+
if progress_callback:
|
| 13 |
+
progress_callback(0.0, desc="Creating test data structure...")
|
| 14 |
+
|
| 15 |
+
# Create directories
|
| 16 |
+
data_dir = Path(f"{TEST_DATA_DIR}/cameras")
|
| 17 |
+
videos_dir = Path(f"{TEST_DATA_DIR}/videos")
|
| 18 |
+
data_dir.mkdir(parents=True, exist_ok=True)
|
| 19 |
+
videos_dir.mkdir(parents=True, exist_ok=True)
|
| 20 |
+
|
| 21 |
+
camera_file = data_dir / "camera_extrinsics.json"
|
| 22 |
+
|
| 23 |
+
# Skip if file already exists
|
| 24 |
+
if camera_file.exists():
|
| 25 |
+
logger.info(f"✓ Camera extrinsics already exist at {camera_file}")
|
| 26 |
+
|
| 27 |
+
if progress_callback:
|
| 28 |
+
progress_callback(1.0, desc="Test data structure already exists")
|
| 29 |
+
|
| 30 |
+
return
|
| 31 |
+
|
| 32 |
+
if progress_callback:
|
| 33 |
+
progress_callback(0.3, desc="Generating camera extrinsics data...")
|
| 34 |
+
|
| 35 |
+
# Generate sample camera data
|
| 36 |
+
camera_data = {}
|
| 37 |
+
|
| 38 |
+
# Create 81 frames with 10 camera trajectories each
|
| 39 |
+
for frame_idx in range(81):
|
| 40 |
+
frame_key = f"frame{frame_idx}"
|
| 41 |
+
camera_data[frame_key] = {}
|
| 42 |
+
|
| 43 |
+
for cam_idx in range(1, 11): # Camera types 1-10
|
| 44 |
+
# Create a sample camera matrix (this is just an example - replace with actual logic if needed)
|
| 45 |
+
# In reality, these would be calculated based on specific camera movement patterns
|
| 46 |
+
|
| 47 |
+
# Create a base identity matrix
|
| 48 |
+
base_matrix = np.eye(4)
|
| 49 |
+
|
| 50 |
+
# Add some variation based on frame and camera type
|
| 51 |
+
# This is a simplistic example - real camera movements would be more complex
|
| 52 |
+
if cam_idx == 1: # Pan Right
|
| 53 |
+
base_matrix[0, 3] = 0.01 * frame_idx # Move right over time
|
| 54 |
+
elif cam_idx == 2: # Pan Left
|
| 55 |
+
base_matrix[0, 3] = -0.01 * frame_idx # Move left over time
|
| 56 |
+
elif cam_idx == 3: # Tilt Up
|
| 57 |
+
# Rotate around X-axis
|
| 58 |
+
angle = 0.005 * frame_idx
|
| 59 |
+
base_matrix[1, 1] = np.cos(angle)
|
| 60 |
+
base_matrix[1, 2] = -np.sin(angle)
|
| 61 |
+
base_matrix[2, 1] = np.sin(angle)
|
| 62 |
+
base_matrix[2, 2] = np.cos(angle)
|
| 63 |
+
elif cam_idx == 4: # Tilt Down
|
| 64 |
+
# Rotate around X-axis (opposite direction)
|
| 65 |
+
angle = -0.005 * frame_idx
|
| 66 |
+
base_matrix[1, 1] = np.cos(angle)
|
| 67 |
+
base_matrix[1, 2] = -np.sin(angle)
|
| 68 |
+
base_matrix[2, 1] = np.sin(angle)
|
| 69 |
+
base_matrix[2, 2] = np.cos(angle)
|
| 70 |
+
elif cam_idx == 5: # Zoom In
|
| 71 |
+
base_matrix[2, 3] = -0.01 * frame_idx # Move forward over time
|
| 72 |
+
elif cam_idx == 6: # Zoom Out
|
| 73 |
+
base_matrix[2, 3] = 0.01 * frame_idx # Move backward over time
|
| 74 |
+
elif cam_idx == 7: # Translate Up (with rotation)
|
| 75 |
+
base_matrix[1, 3] = 0.01 * frame_idx # Move up over time
|
| 76 |
+
angle = 0.003 * frame_idx
|
| 77 |
+
base_matrix[0, 0] = np.cos(angle)
|
| 78 |
+
base_matrix[0, 2] = np.sin(angle)
|
| 79 |
+
base_matrix[2, 0] = -np.sin(angle)
|
| 80 |
+
base_matrix[2, 2] = np.cos(angle)
|
| 81 |
+
elif cam_idx == 8: # Translate Down (with rotation)
|
| 82 |
+
base_matrix[1, 3] = -0.01 * frame_idx # Move down over time
|
| 83 |
+
angle = -0.003 * frame_idx
|
| 84 |
+
base_matrix[0, 0] = np.cos(angle)
|
| 85 |
+
base_matrix[0, 2] = np.sin(angle)
|
| 86 |
+
base_matrix[2, 0] = -np.sin(angle)
|
| 87 |
+
base_matrix[2, 2] = np.cos(angle)
|
| 88 |
+
elif cam_idx == 9: # Arc Left (with rotation)
|
| 89 |
+
angle = 0.005 * frame_idx
|
| 90 |
+
radius = 2.0
|
| 91 |
+
base_matrix[0, 3] = -radius * np.sin(angle)
|
| 92 |
+
base_matrix[2, 3] = -radius * np.cos(angle) + radius
|
| 93 |
+
# Rotate to look at center
|
| 94 |
+
look_angle = angle + np.pi
|
| 95 |
+
base_matrix[0, 0] = np.cos(look_angle)
|
| 96 |
+
base_matrix[0, 2] = np.sin(look_angle)
|
| 97 |
+
base_matrix[2, 0] = -np.sin(look_angle)
|
| 98 |
+
base_matrix[2, 2] = np.cos(look_angle)
|
| 99 |
+
elif cam_idx == 10: # Arc Right (with rotation)
|
| 100 |
+
angle = -0.005 * frame_idx
|
| 101 |
+
radius = 2.0
|
| 102 |
+
base_matrix[0, 3] = -radius * np.sin(angle)
|
| 103 |
+
base_matrix[2, 3] = -radius * np.cos(angle) + radius
|
| 104 |
+
# Rotate to look at center
|
| 105 |
+
look_angle = angle + np.pi
|
| 106 |
+
base_matrix[0, 0] = np.cos(look_angle)
|
| 107 |
+
base_matrix[0, 2] = np.sin(look_angle)
|
| 108 |
+
base_matrix[2, 0] = -np.sin(look_angle)
|
| 109 |
+
base_matrix[2, 2] = np.cos(look_angle)
|
| 110 |
+
|
| 111 |
+
# Format the matrix as a string (as expected by the app)
|
| 112 |
+
matrix_str = ' '.join([' '.join([str(base_matrix[i, j]) for j in range(4)]) for i in range(4)])
|
| 113 |
+
matrix_str = '[ ' + matrix_str.replace(' ', ' ] [ ', 3) + ' ]'
|
| 114 |
+
|
| 115 |
+
camera_data[frame_key][f"cam{cam_idx:02d}"] = matrix_str
|
| 116 |
+
|
| 117 |
+
if progress_callback:
|
| 118 |
+
progress_callback(0.7, desc="Saving camera extrinsics data...")
|
| 119 |
+
|
| 120 |
+
# Save camera extrinsics to JSON file
|
| 121 |
+
with open(camera_file, 'w') as f:
|
| 122 |
+
json.dump(camera_data, f, indent=2)
|
| 123 |
+
|
| 124 |
+
logger.info(f"Created sample camera extrinsics at {camera_file}")
|
| 125 |
+
logger.info(f"Created directory for example videos at {videos_dir}")
|
| 126 |
+
|
| 127 |
+
if progress_callback:
|
| 128 |
+
progress_callback(1.0, desc="Test data structure created successfully!")
|
video_processor.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import json
|
| 4 |
+
import imageio
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from torchvision.transforms import v2
|
| 7 |
+
from einops import rearrange
|
| 8 |
+
import torchvision
|
| 9 |
+
import logging
|
| 10 |
+
from config import TEST_DATA_DIR
|
| 11 |
+
from camera_utils import Camera, parse_matrix, get_relative_pose
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
class VideoProcessor:
|
| 16 |
+
def __init__(self, pipe):
|
| 17 |
+
self.pipe = pipe
|
| 18 |
+
self.height = 480
|
| 19 |
+
self.width = 832
|
| 20 |
+
|
| 21 |
+
# Create frame processor
|
| 22 |
+
self.frame_process = v2.Compose([
|
| 23 |
+
v2.CenterCrop(size=(self.height, self.width)),
|
| 24 |
+
v2.Resize(size=(self.height, self.width), antialias=True),
|
| 25 |
+
v2.ToTensor(),
|
| 26 |
+
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 27 |
+
])
|
| 28 |
+
|
| 29 |
+
def crop_and_resize(self, image):
|
| 30 |
+
"""Crop and resize image to match target dimensions"""
|
| 31 |
+
width_img, height_img = image.size
|
| 32 |
+
scale = max(self.width / width_img, self.height / height_img)
|
| 33 |
+
image = torchvision.transforms.functional.resize(
|
| 34 |
+
image,
|
| 35 |
+
(round(height_img*scale), round(width_img*scale)),
|
| 36 |
+
interpolation=torchvision.transforms.InterpolationMode.BILINEAR
|
| 37 |
+
)
|
| 38 |
+
return image
|
| 39 |
+
|
| 40 |
+
def load_video_frames(self, video_path):
|
| 41 |
+
"""Load and process video frames"""
|
| 42 |
+
reader = imageio.get_reader(video_path)
|
| 43 |
+
frames = []
|
| 44 |
+
|
| 45 |
+
for i in range(81): # ReCamMaster needs exactly 81 frames
|
| 46 |
+
try:
|
| 47 |
+
frame = reader.get_data(i)
|
| 48 |
+
frame = Image.fromarray(frame)
|
| 49 |
+
frame = self.crop_and_resize(frame)
|
| 50 |
+
frame = self.frame_process(frame)
|
| 51 |
+
frames.append(frame)
|
| 52 |
+
except:
|
| 53 |
+
# If we run out of frames, repeat the last one
|
| 54 |
+
if frames:
|
| 55 |
+
frames.append(frames[-1])
|
| 56 |
+
else:
|
| 57 |
+
raise ValueError("Video is too short!")
|
| 58 |
+
|
| 59 |
+
reader.close()
|
| 60 |
+
|
| 61 |
+
frames = torch.stack(frames, dim=0)
|
| 62 |
+
frames = rearrange(frames, "T C H W -> C T H W")
|
| 63 |
+
video_tensor = frames.unsqueeze(0) # Add batch dimension
|
| 64 |
+
|
| 65 |
+
return video_tensor
|
| 66 |
+
|
| 67 |
+
def load_camera_trajectory(self, cam_type):
|
| 68 |
+
"""Load camera trajectory for the selected type"""
|
| 69 |
+
tgt_camera_path = f"./{TEST_DATA_DIR}/cameras/camera_extrinsics.json"
|
| 70 |
+
with open(tgt_camera_path, 'r') as file:
|
| 71 |
+
cam_data = json.load(file)
|
| 72 |
+
|
| 73 |
+
# Get camera trajectory for selected type
|
| 74 |
+
cam_idx = list(range(81))[::4] # Sample every 4 frames
|
| 75 |
+
traj = [parse_matrix(cam_data[f"frame{idx}"][f"cam{int(cam_type):02d}"]) for idx in cam_idx]
|
| 76 |
+
traj = np.stack(traj).transpose(0, 2, 1)
|
| 77 |
+
|
| 78 |
+
c2ws = []
|
| 79 |
+
for c2w in traj:
|
| 80 |
+
c2w = c2w[:, [1, 2, 0, 3]]
|
| 81 |
+
c2w[:3, 1] *= -1.
|
| 82 |
+
c2w[:3, 3] /= 100
|
| 83 |
+
c2ws.append(c2w)
|
| 84 |
+
|
| 85 |
+
tgt_cam_params = [Camera(cam_param) for cam_param in c2ws]
|
| 86 |
+
relative_poses = []
|
| 87 |
+
for i in range(len(tgt_cam_params)):
|
| 88 |
+
relative_pose = get_relative_pose([tgt_cam_params[0], tgt_cam_params[i]])
|
| 89 |
+
relative_poses.append(torch.as_tensor(relative_pose)[:,:3,:][1])
|
| 90 |
+
|
| 91 |
+
pose_embedding = torch.stack(relative_poses, dim=0) # 21x3x4
|
| 92 |
+
pose_embedding = rearrange(pose_embedding, 'b c d -> b (c d)')
|
| 93 |
+
camera_tensor = pose_embedding.to(torch.bfloat16).unsqueeze(0) # Add batch dimension
|
| 94 |
+
|
| 95 |
+
return camera_tensor
|
| 96 |
+
|
| 97 |
+
def process_video(self, video_path, text_prompt, cam_type):
|
| 98 |
+
"""Process video through ReCamMaster model"""
|
| 99 |
+
|
| 100 |
+
# Load video frames
|
| 101 |
+
video_tensor = self.load_video_frames(video_path)
|
| 102 |
+
|
| 103 |
+
# Load camera trajectory
|
| 104 |
+
camera_tensor = self.load_camera_trajectory(cam_type)
|
| 105 |
+
|
| 106 |
+
# Generate video with ReCamMaster
|
| 107 |
+
video = self.pipe(
|
| 108 |
+
prompt=[text_prompt],
|
| 109 |
+
negative_prompt=["worst quality, low quality, blurry, jittery, distorted"],
|
| 110 |
+
source_video=video_tensor,
|
| 111 |
+
target_camera=camera_tensor,
|
| 112 |
+
cfg_scale=5.0,
|
| 113 |
+
num_inference_steps=50,
|
| 114 |
+
seed=0,
|
| 115 |
+
tiled=True
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
return video
|