Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,321 Bytes
46861c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2025) B-
# ytedance Inc..
# *************************************************************************
# Adapted from https://github.com/NVlabs/describe-anything/blob/main/evaluation/eval_model_outputs.py
# Copyright 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import base64
import io
import json
import os
import inflect
import numpy as np
import openai
from PIL import Image
from pycocotools.coco import COCO
from tqdm import tqdm
# Define Azure OpenAI details
model_name = "gpt-4o-2024-11-20"
max_tokens = 1000 # range: [1, 4095]
# Initialize the Azure client
client = openai.AzureOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_KEY"),
api_version="2024-03-01-preview",
)
prompt_eval = """Answer the multiple-choice question based on the text description of an object in this image. You need to follow these rules:
1. Do not output any reasoning. Do not perform correction. Please output exactly one answer from the choices for each question. Do not repeat the question.
2. There is no need for exact matching. Please choose the closest option based on the description.
The description is:
{pred_caption}
From the description above, please answer the following question with one of the choices:
{question_text_str}
"""
api_call_count = 0
def query(prompt, images, temperature, max_tokens):
global api_call_count
if api_call_count >= args.api_call_limit:
raise Exception("API call limit reached")
api_call_count += 1
content = [
{"type": "text", "text": "The image:\n"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{images[0]}"},
},
{"type": "text", "text": "\nThe mask of the image:\n"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{images[1]}"},
},
{"type": "text", "text": f"\n{prompt}\n"},
]
# Adjusted to use the Azure OpenAI client with the specified parameters
response = client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": content}],
max_tokens=max_tokens,
temperature=temperature,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
message = response.choices[0].message.content
return message
def parse_pred(pred, choices, key):
pred = pred.strip().lower()
substr_indices = []
for index, choice in enumerate(choices):
choice = choice.strip().lower()
prefix = "abcde"[index]
if choice == pred or pred == f"{prefix}. {choice}" or pred == prefix:
return index
if choice in pred:
substr_indices.append((index, pred.index(choice), len(choice)))
if len(substr_indices) == 1:
return substr_indices[0][0]
choices_label = "abcde"
if pred[0] in choices_label and pred[1] == ".":
ret = choices_label.index(pred[0])
return ret
if substr_indices:
if len(substr_indices) > 1:
ret, ret_pos, _ = max(substr_indices, key=lambda x: x[1])
max_items = [item for item in substr_indices if item[1] == ret_pos]
if len(max_items) > 1:
ret = max(max_items, key=lambda x: x[2])[0]
return ret
else:
ret = substr_indices[0][0]
return ret
match_lengths = []
for index, choice in enumerate(choices):
choice = choice.strip().lower()
if pred in choice:
match_lengths.append((index, len(choice)))
if match_lengths:
if len(match_lengths) > 1:
ret = max(match_lengths, key=lambda x: x[1])[0]
else:
ret = match_lengths[0][0]
return ret
if pred[0] in "abcde" and (len(pred.strip()) == 1 or pred[1] == "\n"):
ret = "abcde".index(pred[0])
return ret
return None
def evaluate(
question_dicts,
pred_caption,
temperature,
max_tokens,
images,
*,
response_override=None,
key,
verbose=False,
) -> dict:
pred_answers = []
prompt = []
response = []
for index, question_dict in enumerate(question_dicts):
question_text_str = f"{question_dict['question']}\n"
choices_text = ""
for choice_index, (choice, score) in enumerate(question_dict["choices"]):
choice_index = "ABCDE"[choice_index]
choices_text += f"{choice_index}. {choice}\n"
question_text_str += choices_text
prompt_item = prompt_eval.format(
pred_caption=pred_caption, question_text_str=question_text_str.strip()
)
if (
response_override is None
or len(response_override) < index
or response_override[index] is None
):
response_item = query(prompt_item, images, temperature, max_tokens)
else:
response_item = response_override[index]
pred_answer = response_item.strip()
pred_answers.append(pred_answer)
prompt.append(prompt_item)
response.append(response_item)
pred_indices = [
parse_pred(
pred_answer, [choice for choice, score in question_dict["choices"]], key
)
for pred_answer, question_dict in zip(pred_answers, question_dicts)
]
parsed_eval_results = [
question_dict["choices"][pred_index][1] if pred_index is not None else 0
for pred_index, question_dict in zip(pred_indices, question_dicts)
]
parsed_eval_results_positives = []
parsed_eval_results_negatives = []
details_positives = []
details_negatives = []
details_recognition = []
recognition_result = None
for question_index, (parsed_eval_result, question_dict) in enumerate(
zip(parsed_eval_results, question_dicts)
):
if question_dict["type"] == "recognition":
if parsed_eval_result == "correct":
recognition_result = True
elif parsed_eval_result == "incorrect":
recognition_result = False
print(
f"Recognition is incorrect for key {key}, setting score to at most 0 for all questions"
)
else:
raise ValueError(f"Invalid recognition result: {parsed_eval_result}")
details_recognition.append(
{
**question_dict,
"pred_answer": pred_answers[question_index],
"pred_index": pred_indices[question_index],
"eval_result": parsed_eval_result,
}
)
elif question_dict["type"] == "negative":
if recognition_result is False:
parsed_eval_result = min(0, parsed_eval_result)
parsed_eval_results_negatives.append(parsed_eval_result)
details_negatives.append(
{
**question_dict,
"pred_answer": pred_answers[question_index],
"pred_index": pred_indices[question_index],
"eval_result": parsed_eval_result,
}
)
elif question_dict["type"] == "positive":
if recognition_result is False:
parsed_eval_result = min(0, parsed_eval_result)
parsed_eval_results_positives.append(parsed_eval_result)
details_positives.append(
{
**question_dict,
"pred_answer": pred_answers[question_index],
"pred_index": pred_indices[question_index],
"eval_result": parsed_eval_result,
}
)
score_pos = sum(parsed_eval_results_positives) / len(parsed_eval_results_positives)
score_neg = (
sum(parsed_eval_results_negatives) / len(parsed_eval_results_negatives)
if parsed_eval_results_negatives
else None
)
score = (
sum(parsed_eval_results_positives) + sum(parsed_eval_results_negatives)
) / (len(parsed_eval_results_positives) + len(parsed_eval_results_negatives))
info = dict(
details_positives=details_positives,
details_negatives=details_negatives,
details_recognition=details_recognition,
prompt=prompt,
response=response,
score=score,
score_pos=score_pos,
score_neg=score_neg,
recognition_result=recognition_result,
)
return info
def is_plural(string):
if string == "bus":
return False
return p.singular_noun(string) is not False
def select_ann(img_id, area_min=None, area_max=None):
cat_ids = coco.getCatIds()
ann_ids = coco.getAnnIds(imgIds=[img_id], catIds=cat_ids, iscrowd=None)
if area_min is not None:
ann_ids = [
ann_id for ann_id in ann_ids if coco.anns[ann_id]["area"] >= area_min
]
if area_max is not None:
ann_ids = [
ann_id for ann_id in ann_ids if coco.anns[ann_id]["area"] <= area_max
]
return ann_ids
def mask_to_box(mask_np):
mask_coords = np.argwhere(mask_np)
y0, x0 = mask_coords.min(axis=0)
y1, x1 = mask_coords.max(axis=0) + 1
h = y1 - y0
w = x1 - x0
return x0, y0, w, h
def encode_pil_image_to_base64(pil_image):
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate model outputs")
parser.add_argument(
"--pred", type=str, help="Path to the prediction JSON file", required=True
)
parser.add_argument(
"--qa",
type=str,
help="Path to the reference QA file",
default="evaluation/DLC-Bench/annotations/qa.json",
)
parser.add_argument(
"--class-names",
type=str,
help="Path to the class names JSON file",
default="evaluation/DLC-Bench/annotations/class_names.json",
)
parser.add_argument(
"--api-call-limit", type=int, default=1000, help="API call limit"
)
parser.add_argument(
"--suffix", type=str, default="", help="Suffix for the evaluation file"
)
parser.add_argument("--verbose", action="store_true", help="Enable verbose mode")
parser.add_argument(
"--quiet", action="store_true", help="Enable quiet mode (result only)"
)
parser.add_argument("--csv", action="store_true", help="Output results as CSV only")
parser.add_argument(
"--data-root", type=str, default="evaluation/DLC-Bench/annotations"
)
args = parser.parse_args()
eval_file = os.path.splitext(args.pred)[0] + f"_eval_gpt{args.suffix}.json"
eval_results = {}
if os.path.exists(eval_file):
with open(eval_file) as f:
eval_results = json.load(f)
with open(args.pred) as f:
data_pred = json.load(f)
with open(args.qa) as f:
data_qa = json.load(f)
with open(args.class_names) as f:
data_class_names = json.load(f)
scores = {}
scores_pos = {}
scores_neg = {}
keys = list(data_qa.keys())
p = inflect.engine()
annotations_file = os.path.join(args.data_root, "annotations.json")
coco = COCO(annotations_file)
with open(annotations_file, "r") as f:
data = json.load(f)
missing_key_count = 0
for key in tqdm(keys, disable=args.quiet):
key = str(key)
for item in data["annotations"]:
if int(item["id"]) == int(key):
img_id = item["image_id"]
img_info = coco.loadImgs(img_id)[0]
img_path = os.path.join(args.data_root, "images", img_info["file_name"])
img = Image.open(img_path)
anns = coco.loadAnns([int(key)])
mask_np = coco.annToMask(anns[0]).astype(bool)
img_np = np.array(img)
pil_mask = Image.fromarray((mask_np * 255).astype(np.uint8))
assert (
img_np.shape[:2] == mask_np.shape
), f"image shape mismatches with mask shape: {img_np.shape}, {mask_np.shape}"
img_h, img_w = img_np.shape[:2]
x0, y0, w, h = mask_to_box(mask_np)
xc, yc = x0 + w / 2, y0 + h / 2
# focal_crop: need to have at least min_box_w and min_box_h pixels, otherwise resizing to (384, 384) leads to artifacts that may be OOD
w, h = max(w, 56), max(h, 56)
x0, y0 = int(xc - w / 2), int(yc - h / 2)
# focal crop
cropped_img_np = img_np[
max(y0 - h, 0) : min(y0 + 2 * h, img_h),
max(x0 - w, 0) : min(x0 + 2 * w, img_w),
]
cropped_mask_np = mask_np[
max(y0 - h, 0) : min(y0 + 2 * h, img_h),
max(x0 - w, 0) : min(x0 + 2 * w, img_w),
]
cropped_pil_img = Image.fromarray(cropped_img_np)
cropped_pil_mask = Image.fromarray((cropped_mask_np * 255).astype(np.uint8))
base64_image = encode_pil_image_to_base64(img)
base64_mask = encode_pil_image_to_base64(pil_mask)
base64_cropped_image = encode_pil_image_to_base64(cropped_pil_img)
base64_cropped_mask = encode_pil_image_to_base64(cropped_pil_mask)
images = [base64_cropped_image, base64_cropped_mask]
if key in eval_results:
response_override = eval_results[key]["response"]
else:
response_override = None
if key not in data_pred:
if args.default_prediction is None:
raise ValueError(f"Key {key} not found in prediction data")
else:
pred_value = args.default_prediction
missing_key_count += 1
else:
pred_value = data_pred[key]
class_name = data_class_names[key]
recognition_question = f"The object in the image is {class_name}. Based on the image, is it likely that the object in the description is given class: {class_name} or object of a similar type?"
recognition_question_dict = {
"question": recognition_question,
"choices": [("Yes", "correct"), ("No", "incorrect")],
"type": "recognition",
}
question_dicts = [recognition_question_dict, *data_qa[key]]
info = evaluate(
question_dicts=question_dicts,
pred_caption=pred_value,
images=images,
temperature=0.0,
max_tokens=300,
response_override=response_override,
key=key,
)
score = info["score"]
scores[key] = score
scores_pos[key] = info["score_pos"]
scores_neg[key] = info["score_neg"]
eval_results[key] = {"pred": pred_value, **info}
avg_score_pos = sum(scores_pos.values()) / len(scores_pos)
avg_score_neg = sum(
[item for item in scores_neg.values() if item is not None]
) / len(scores_neg)
eval_results["avg_pos"] = avg_score_pos
eval_results["avg_neg"] = avg_score_neg
with open(eval_file, "w") as f:
json.dump(eval_results, f, indent=4)
print(f"Average Positive Score: {avg_score_pos:.3f}")
print(f"Average Negative Score: {avg_score_neg:.3f}")
print(
f"Summary (Pos\tNeg\tAvg(Pos, Neg)):\t{avg_score_pos:.3f},\t{avg_score_neg:.3f},\t{(avg_score_pos + avg_score_neg) / 2:.3f}"
)
print(f"QA Scores: {scores}")
print(f"Evaluation data saved to {eval_file}")
|