File size: 19,420 Bytes
46861c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# Copyright 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import argparse
import json
import os

import inflect
from openai import OpenAI
from tqdm import tqdm

prompt_eval = """Answer the multiple-choice question based on the text description of an object in an image. You need to follow these rules:
1. Do not output any reasoning. Do not perform correction. Please output exactly one answer from the choices for each question. Do not repeat the question.
2. There is no need for exact matching. Please choose the closest option based on the description.

The description is:
{pred_caption}

From the description above, please answer the following question with one of the choices:
{question_text_str}
"""

api_call_count = 0


def query(prompt, temperature, max_tokens, model):
    global api_call_count
    if api_call_count >= args.api_call_limit:
        raise Exception("API call limit reached")

    api_call_count += 1
    response = client.chat.completions.create(
        model=model,
        messages=[{"role": "user", "content": prompt}],
        temperature=temperature,
        max_tokens=max_tokens,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
    )

    message = response.choices[0].message.content
    return message


def parse_pred(pred, choices, key):
    pred = pred.strip().lower()
    substr_indices = []
    for index, choice in enumerate(choices):
        choice = choice.strip().lower()
        prefix = "abcde"[index]
        if choice == pred or pred == f"{prefix}. {choice}" or pred == prefix:
            return index
        if choice in pred:
            substr_indices.append((index, pred.index(choice), len(choice)))

    # Only one match (choice in prediction)
    if len(substr_indices) == 1:
        return substr_indices[0][0]

    # Prefix match
    choices_label = "abcde"
    if pred[0] in choices_label and pred[1] == ".":
        ret = choices_label.index(pred[0])
        # print(f"{key}: Chosen {ret} for pred: {pred}, choices: {choices}")
        # print(f"{key}: More than one occurrence found or no substr of choice in pred: pred {pred}, choices {choices}, substr indices: {substr_indices}, returning {ret} (choice {choices_label})")
        return ret

    # More than one match
    if substr_indices:
        # Return the last occurrence if there are multiple matches (referenced from MMMU): https://github.com/MMMU-Benchmark/MMMU/blob/b119c944a15c145c10d52a58e841c5b9cb6a535e/eval/utils/eval_utils.py#L57
        if len(substr_indices) > 1:
            ret, ret_pos, _ = max(substr_indices, key=lambda x: x[1])
            max_items = [item for item in substr_indices if item[1] == ret_pos]
            if len(max_items) > 1:
                # select the item with the longest match if there are multiple occurrence at the same place
                ret = max(max_items, key=lambda x: x[2])[0]
            print(
                f"{key}: More than one occurrence found: pred {pred}, choices {choices}, {substr_indices}, returning {ret} (choice {choices_label})"
            )
        else:
            ret = substr_indices[0][0]
        return ret

    # Parse the case where pred is a substr of choice
    match_lengths = []
    for index, choice in enumerate(choices):
        choice = choice.strip().lower()
        if pred in choice:
            match_lengths.append((index, len(choice)))
    if match_lengths:
        # Return the longest matched substring if there are multiple matches
        if len(match_lengths) > 1:
            ret = max(match_lengths, key=lambda x: x[1])[0]
            print(
                f"{key}: More than one occurrence found: pred {pred}, choices {choices}, {match_lengths}, returning {ret}"
            )
        else:
            ret = match_lengths[0][0]
        return ret

    if pred[0] in "abcde" and (len(pred.strip()) == 1 or pred[1] == "\n"):
        ret = "abcde".index(pred[0])
        print(f"{key}: Chosen {ret} for pred: {pred}, choices: {choices}")
        return ret

    print(f"*WARNING*: {key}: No match found. Pred: {pred}, choices: {choices}")

    # If no matching choice is found, raise an error.
    # raise ValueError(f"No match found. Pred: {pred}, Choices: {choices}")
    # If no matching choice is found, return None (treat as no mention, score 0).
    return None


def evaluate(
    question_dicts,
    pred_caption,
    temperature,
    max_tokens,
    model,
    *,
    response_override=None,
    key,
    verbose=False,
) -> dict:
    pred_answers = []
    prompt = []
    response = []
    for index, question_dict in enumerate(question_dicts):
        question_text_str = f"{question_dict['question']}\n"
        choices_text = ""
        for choice_index, (choice, score) in enumerate(question_dict["choices"]):
            choice_index = "ABCDE"[choice_index]
            choices_text += f"{choice_index}. {choice}\n"
        question_text_str += choices_text
        prompt_item = prompt_eval.format(
            pred_caption=pred_caption, question_text_str=question_text_str.strip()
        )

        if (
            response_override is None
            or len(response_override) < index
            or response_override[index] is None
        ):
            response_item = query(prompt_item, temperature, max_tokens, model)
            # print(f"Prompt:\n{prompt_item}")
            # print(f"Output: {response_item}")
        else:
            response_item = response_override[index]

        pred_answer = response_item.strip()
        pred_answers.append(pred_answer)
        prompt.append(prompt_item)
        response.append(response_item)

    assert len(pred_answers) == len(
        question_dicts
    ), f"Length mismatch for key {key} question {index}: pred: {len(pred_answers)} vs question: {len(question_dicts)}"
    pred_indices = [
        parse_pred(
            pred_answer, [choice for choice, score in question_dict["choices"]], key
        )
        for pred_answer, question_dict in zip(pred_answers, question_dicts)
    ]

    assert len(pred_indices) == len(
        question_dicts
    ), f"Length mismatch for key {key} question {index}: pred: {len(pred_indices)} vs question: {len(question_dicts)}"

    # If no matching, treat as no mention.
    try:
        parsed_eval_results = [
            question_dict["choices"][pred_index][1] if pred_index is not None else 0
            for pred_index, question_dict in zip(pred_indices, question_dicts)
        ]
    except IndexError as e:
        print(
            f"Error: {e}, key: {key}, pred_indices: {pred_indices}, question_dicts: {question_dicts}"
        )
        raise e

    parsed_eval_results_positives = []
    parsed_eval_results_negatives = []

    details_positives = []
    details_negatives = []
    details_recognition = []
    recognition_result = None
    for question_index, (parsed_eval_result, question_dict) in enumerate(
        zip(parsed_eval_results, question_dicts)
    ):
        if question_dict["type"] == "recognition":
            # If the type is recognition, it's the recognition question.
            if parsed_eval_result == "correct":
                recognition_result = True
            elif parsed_eval_result == "incorrect":
                recognition_result = False
                print(
                    f"Recognition is incorrect for key {key}, setting score to at most 0 for all questions"
                )
            else:
                raise ValueError(f"Invalid recognition result: {parsed_eval_result}")
            details_recognition.append(
                {
                    **question_dict,
                    "pred_answer": pred_answers[question_index],
                    "pred_index": pred_indices[question_index],
                    "eval_result": parsed_eval_result,
                }
            )
        elif question_dict["type"] == "negative":
            assert (
                recognition_result is not None
            ), f"Negative questions come before recognition question in {key}, {question_dicts}"
            if recognition_result is False:
                if verbose:
                    print(
                        f"Processing negative question {question_index} for key {key}, setting score to at most 0 since recognition is incorrect"
                    )
                parsed_eval_result = min(0, parsed_eval_result)
            # If the type is negative, it's one of the negatives.
            parsed_eval_results_negatives.append(parsed_eval_result)
            details_negatives.append(
                {
                    **question_dict,
                    "pred_answer": pred_answers[question_index],
                    "pred_index": pred_indices[question_index],
                    # Subtract 1 to get the index in the original question list (excluding the recognition question)
                    "question_index": question_index - 1,
                    "eval_result": parsed_eval_result,
                }
            )
        elif question_dict["type"] == "positive":
            assert (
                recognition_result is not None
            ), f"Positive questions come before recognition question in {key}, {question_dicts}"
            if recognition_result is False:
                if verbose:
                    print(
                        f"Processing positive question {question_index} for key {key}, setting score to at most 0 since recognition is incorrect"
                    )
                parsed_eval_result = min(0, parsed_eval_result)
            parsed_eval_results_positives.append(parsed_eval_result)
            details_positives.append(
                {
                    **question_dict,
                    "pred_answer": pred_answers[question_index],
                    "pred_index": pred_indices[question_index],
                    # Subtract 1 to get the index in the original question list (excluding the recognition question)
                    "question_index": question_index - 1,
                    "eval_result": parsed_eval_result,
                }
            )
        else:
            raise ValueError(f"Invalid question type: {question_dict['type']}")

    score_pos = sum(parsed_eval_results_positives) / len(parsed_eval_results_positives)
    # It's possible that we don't have negatives for an instance. For this case, we skip over the instance for negative score calculation.
    if len(parsed_eval_results_negatives):
        score_neg = sum(parsed_eval_results_negatives) / len(
            parsed_eval_results_negatives
        )
    else:
        score_neg = None

    # Overall score is the average of the positive and negative scores
    info = dict(
        details_positives=details_positives,
        details_negatives=details_negatives,
        details_recognition=details_recognition,
        prompt=prompt,
        response=response,
        score=(sum(parsed_eval_results_positives) + sum(parsed_eval_results_negatives))
        / (len(parsed_eval_results_positives) + len(parsed_eval_results_negatives)),
        score_pos=score_pos,
        score_neg=score_neg,
        neg_valid_num=len(parsed_eval_results_negatives),
        recognition_result=recognition_result,
    )

    return info


def is_plural(string):
    # A case that the inflect library does not handle
    if string == "bus":
        return False
    # singular_noun returns False if the word is already singular (otherwise it returns the singular form)
    return p.singular_noun(string) is not False


if __name__ == "__main__":
    # Example:
    # python eval_model_outputs.py --pred model_outputs_cache/dam_3b_v1.json --base-url "http://localhost:9100/v1"

    parser = argparse.ArgumentParser(description="Evaluate model outputs")
    parser.add_argument(
        "--pred", type=str, help="Path to the prediction JSON file", required=True
    )
    parser.add_argument(
        "--qa",
        type=str,
        help="Path to the reference QA file",
        default="evaluation/DLC-Bench/annotations/qa.json",
    )
    parser.add_argument(
        "--class-names",
        type=str,
        help="Path to the class names JSON file",
        default="evaluation/DLC-Bench/annotations/class_names.json",
    )
    parser.add_argument(
        "--default-prediction",
        type=str,
        default=None,
        help="Default prediction if key is not present in the prediction file",
    )
    parser.add_argument(
        "--api-call-limit", type=int, default=1000, help="API call limit"
    )
    parser.add_argument(
        "--api-key", type=str, default=None, help="Path to the OpenAI API key file"
    )
    parser.add_argument(
        "--suffix", type=str, default="", help="Suffix for the evaluation file"
    )
    parser.add_argument("--model", type=str, default="llama3.1-8b", help="Model name")
    parser.add_argument("--verbose", action="store_true", help="Enable verbose mode")
    parser.add_argument(
        "--quiet", action="store_true", help="Enable quiet mode (result only)"
    )
    parser.add_argument("--csv", action="store_true", help="Output results as CSV only")

    parser.add_argument(
        "--base-url",
        type=str,
        default="http://localhost:8007/v1",
        help="Base URL for the API call",
    )
    args = parser.parse_args()

    always_print = print
    if args.quiet:
        print = lambda *args, **kwargs: None

    # v3 is from v2.1
    eval_file = os.path.splitext(args.pred)[0] + f"_eval{args.suffix}.json"
    eval_results = {}

    if False:
        assert not os.path.exists(eval_file), f"Evaluation file exists at {eval_file}"
    else:
        if os.path.exists(eval_file):
            print(f"Loading existing evaluation data from {eval_file}")
            try:
                with open(eval_file) as f:
                    eval_results = json.load(f)
            except Exception as e:
                always_print(f"Error loading evaluation data {eval_file}: {e}")
                raise e

    if args.api_key:
        with open(args.api_key) as f:
            client = OpenAI(api_key=f.read().strip(), base_url=args.base_url)
    else:
        client = OpenAI(api_key="sk-abc123", base_url=args.base_url)

    with open(args.pred) as f:
        data_pred = json.load(f)

    with open(args.qa) as f:
        data_qa = json.load(f)

    with open(args.class_names) as f:
        data_class_names = json.load(f)

    scores = {}
    scores_pos = {}
    scores_neg = {}

    keys = list(data_qa.keys())

    p = inflect.engine()

    print(f"Using model {args.model}")

    missing_key_count = 0
    for key in tqdm(keys, disable=args.quiet):
        key = str(key)
        if key in eval_results:
            if args.verbose:
                print(f"Skipping {key}")
            response_override = eval_results[key]["response"]
        else:
            response_override = None

        if key not in data_pred:
            if args.default_prediction is None:
                raise ValueError(
                    f"Key {key} not found in prediction data, and no default prediction provided"
                )
            else:
                print(
                    f"Key {key} not found in prediction data, using default prediction {args.default_prediction}"
                )
                pred_value = args.default_prediction
                missing_key_count += 1
        elif data_pred[key].startswith("Error:"):
            if args.default_prediction is None:
                raise ValueError(
                    f"Key {key} has an error in prediction data, and no default prediction provided: {data_pred[key]}"
                )
            else:
                print(
                    f"Key {key} has an error in prediction: {data_pred[key]}, using default prediction {args.default_prediction}"
                )
                pred_value = args.default_prediction
                missing_key_count += 1
        else:
            pred_value = data_pred[key]

        # print(f"Evaluating {key}")
        class_name = data_class_names[key]

        if is_plural(class_name):
            recognition_question = f"Is it likely that the objects in the description are {class_name} or objects of a similar type? Again, It does not have to be an exact match."
        else:
            recognition_question = f"Is it likely that the object in the description is {p.a(class_name)} or an object of a similar type? Again, It does not have to be an exact match."
        recognition_question_dict = {
            "question": recognition_question,
            "choices": [("Yes", "correct"), ("No", "incorrect")],
            "type": "recognition",
        }

        # Add the recognition question to the beginning of the list
        question_dicts = [recognition_question_dict, *data_qa[key]]
        info = evaluate(
            question_dicts=question_dicts,
            pred_caption=pred_value,
            model=args.model,
            temperature=0.0,
            max_tokens=300,
            response_override=response_override,
            key=key,
            verbose=args.verbose,
        )
        score = info["score"]
        scores[key] = score
        scores_pos[key] = info["score_pos"]
        scores_neg[key] = info["score_neg"]
        eval_results[key] = {"pred": pred_value, **info}

        if args.verbose:
            print(f"Score: {score}")

        with open(eval_file, "w") as f:
            json.dump(eval_results, f, indent=4)

    avg_score_pos = sum(scores_pos.values()) / len(scores_pos)
    scores_neg_valid_only = [item for item in scores_neg.values() if item is not None]
    avg_score_neg = sum(scores_neg_valid_only) / len(scores_neg_valid_only)

    if args.csv:
        # Print comma-separated values directly to stdout
        always_print(
            f"{avg_score_pos:.3f},{avg_score_neg:.3f},{(avg_score_pos + avg_score_neg) / 2:.3f}"
        )
    else:
        always_print(f"Result for {args.pred}")
        always_print(f"Average Positive Score: {avg_score_pos:.3f}")
        always_print(f"Average Negative Score: {avg_score_neg:.3f}")
        always_print(
            f"Average of Positive and Negative Scores: {(avg_score_pos + avg_score_neg) / 2:.3f}"
        )
        always_print(
            f"Summary (Pos\tNeg\tAvg(Pos, Neg)):\t{avg_score_pos:.3f},\t{avg_score_neg:.3f},\t{(avg_score_pos + avg_score_neg) / 2:.3f}"
        )
        print(f"QA Scores: {scores}")

        if missing_key_count:
            print(
                f"Note: Missing {missing_key_count} keys, using default prediction {args.default_prediction}"
            )

    eval_results["avg_pos"] = avg_score_pos
    eval_results["avg_neg"] = avg_score_neg
    with open(eval_file, "w") as f:
        json.dump(eval_results, f, indent=4)

    print(f"Evaluation data saved to {eval_file}")