Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,420 Bytes
46861c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
# Copyright 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
import inflect
from openai import OpenAI
from tqdm import tqdm
prompt_eval = """Answer the multiple-choice question based on the text description of an object in an image. You need to follow these rules:
1. Do not output any reasoning. Do not perform correction. Please output exactly one answer from the choices for each question. Do not repeat the question.
2. There is no need for exact matching. Please choose the closest option based on the description.
The description is:
{pred_caption}
From the description above, please answer the following question with one of the choices:
{question_text_str}
"""
api_call_count = 0
def query(prompt, temperature, max_tokens, model):
global api_call_count
if api_call_count >= args.api_call_limit:
raise Exception("API call limit reached")
api_call_count += 1
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
message = response.choices[0].message.content
return message
def parse_pred(pred, choices, key):
pred = pred.strip().lower()
substr_indices = []
for index, choice in enumerate(choices):
choice = choice.strip().lower()
prefix = "abcde"[index]
if choice == pred or pred == f"{prefix}. {choice}" or pred == prefix:
return index
if choice in pred:
substr_indices.append((index, pred.index(choice), len(choice)))
# Only one match (choice in prediction)
if len(substr_indices) == 1:
return substr_indices[0][0]
# Prefix match
choices_label = "abcde"
if pred[0] in choices_label and pred[1] == ".":
ret = choices_label.index(pred[0])
# print(f"{key}: Chosen {ret} for pred: {pred}, choices: {choices}")
# print(f"{key}: More than one occurrence found or no substr of choice in pred: pred {pred}, choices {choices}, substr indices: {substr_indices}, returning {ret} (choice {choices_label})")
return ret
# More than one match
if substr_indices:
# Return the last occurrence if there are multiple matches (referenced from MMMU): https://github.com/MMMU-Benchmark/MMMU/blob/b119c944a15c145c10d52a58e841c5b9cb6a535e/eval/utils/eval_utils.py#L57
if len(substr_indices) > 1:
ret, ret_pos, _ = max(substr_indices, key=lambda x: x[1])
max_items = [item for item in substr_indices if item[1] == ret_pos]
if len(max_items) > 1:
# select the item with the longest match if there are multiple occurrence at the same place
ret = max(max_items, key=lambda x: x[2])[0]
print(
f"{key}: More than one occurrence found: pred {pred}, choices {choices}, {substr_indices}, returning {ret} (choice {choices_label})"
)
else:
ret = substr_indices[0][0]
return ret
# Parse the case where pred is a substr of choice
match_lengths = []
for index, choice in enumerate(choices):
choice = choice.strip().lower()
if pred in choice:
match_lengths.append((index, len(choice)))
if match_lengths:
# Return the longest matched substring if there are multiple matches
if len(match_lengths) > 1:
ret = max(match_lengths, key=lambda x: x[1])[0]
print(
f"{key}: More than one occurrence found: pred {pred}, choices {choices}, {match_lengths}, returning {ret}"
)
else:
ret = match_lengths[0][0]
return ret
if pred[0] in "abcde" and (len(pred.strip()) == 1 or pred[1] == "\n"):
ret = "abcde".index(pred[0])
print(f"{key}: Chosen {ret} for pred: {pred}, choices: {choices}")
return ret
print(f"*WARNING*: {key}: No match found. Pred: {pred}, choices: {choices}")
# If no matching choice is found, raise an error.
# raise ValueError(f"No match found. Pred: {pred}, Choices: {choices}")
# If no matching choice is found, return None (treat as no mention, score 0).
return None
def evaluate(
question_dicts,
pred_caption,
temperature,
max_tokens,
model,
*,
response_override=None,
key,
verbose=False,
) -> dict:
pred_answers = []
prompt = []
response = []
for index, question_dict in enumerate(question_dicts):
question_text_str = f"{question_dict['question']}\n"
choices_text = ""
for choice_index, (choice, score) in enumerate(question_dict["choices"]):
choice_index = "ABCDE"[choice_index]
choices_text += f"{choice_index}. {choice}\n"
question_text_str += choices_text
prompt_item = prompt_eval.format(
pred_caption=pred_caption, question_text_str=question_text_str.strip()
)
if (
response_override is None
or len(response_override) < index
or response_override[index] is None
):
response_item = query(prompt_item, temperature, max_tokens, model)
# print(f"Prompt:\n{prompt_item}")
# print(f"Output: {response_item}")
else:
response_item = response_override[index]
pred_answer = response_item.strip()
pred_answers.append(pred_answer)
prompt.append(prompt_item)
response.append(response_item)
assert len(pred_answers) == len(
question_dicts
), f"Length mismatch for key {key} question {index}: pred: {len(pred_answers)} vs question: {len(question_dicts)}"
pred_indices = [
parse_pred(
pred_answer, [choice for choice, score in question_dict["choices"]], key
)
for pred_answer, question_dict in zip(pred_answers, question_dicts)
]
assert len(pred_indices) == len(
question_dicts
), f"Length mismatch for key {key} question {index}: pred: {len(pred_indices)} vs question: {len(question_dicts)}"
# If no matching, treat as no mention.
try:
parsed_eval_results = [
question_dict["choices"][pred_index][1] if pred_index is not None else 0
for pred_index, question_dict in zip(pred_indices, question_dicts)
]
except IndexError as e:
print(
f"Error: {e}, key: {key}, pred_indices: {pred_indices}, question_dicts: {question_dicts}"
)
raise e
parsed_eval_results_positives = []
parsed_eval_results_negatives = []
details_positives = []
details_negatives = []
details_recognition = []
recognition_result = None
for question_index, (parsed_eval_result, question_dict) in enumerate(
zip(parsed_eval_results, question_dicts)
):
if question_dict["type"] == "recognition":
# If the type is recognition, it's the recognition question.
if parsed_eval_result == "correct":
recognition_result = True
elif parsed_eval_result == "incorrect":
recognition_result = False
print(
f"Recognition is incorrect for key {key}, setting score to at most 0 for all questions"
)
else:
raise ValueError(f"Invalid recognition result: {parsed_eval_result}")
details_recognition.append(
{
**question_dict,
"pred_answer": pred_answers[question_index],
"pred_index": pred_indices[question_index],
"eval_result": parsed_eval_result,
}
)
elif question_dict["type"] == "negative":
assert (
recognition_result is not None
), f"Negative questions come before recognition question in {key}, {question_dicts}"
if recognition_result is False:
if verbose:
print(
f"Processing negative question {question_index} for key {key}, setting score to at most 0 since recognition is incorrect"
)
parsed_eval_result = min(0, parsed_eval_result)
# If the type is negative, it's one of the negatives.
parsed_eval_results_negatives.append(parsed_eval_result)
details_negatives.append(
{
**question_dict,
"pred_answer": pred_answers[question_index],
"pred_index": pred_indices[question_index],
# Subtract 1 to get the index in the original question list (excluding the recognition question)
"question_index": question_index - 1,
"eval_result": parsed_eval_result,
}
)
elif question_dict["type"] == "positive":
assert (
recognition_result is not None
), f"Positive questions come before recognition question in {key}, {question_dicts}"
if recognition_result is False:
if verbose:
print(
f"Processing positive question {question_index} for key {key}, setting score to at most 0 since recognition is incorrect"
)
parsed_eval_result = min(0, parsed_eval_result)
parsed_eval_results_positives.append(parsed_eval_result)
details_positives.append(
{
**question_dict,
"pred_answer": pred_answers[question_index],
"pred_index": pred_indices[question_index],
# Subtract 1 to get the index in the original question list (excluding the recognition question)
"question_index": question_index - 1,
"eval_result": parsed_eval_result,
}
)
else:
raise ValueError(f"Invalid question type: {question_dict['type']}")
score_pos = sum(parsed_eval_results_positives) / len(parsed_eval_results_positives)
# It's possible that we don't have negatives for an instance. For this case, we skip over the instance for negative score calculation.
if len(parsed_eval_results_negatives):
score_neg = sum(parsed_eval_results_negatives) / len(
parsed_eval_results_negatives
)
else:
score_neg = None
# Overall score is the average of the positive and negative scores
info = dict(
details_positives=details_positives,
details_negatives=details_negatives,
details_recognition=details_recognition,
prompt=prompt,
response=response,
score=(sum(parsed_eval_results_positives) + sum(parsed_eval_results_negatives))
/ (len(parsed_eval_results_positives) + len(parsed_eval_results_negatives)),
score_pos=score_pos,
score_neg=score_neg,
neg_valid_num=len(parsed_eval_results_negatives),
recognition_result=recognition_result,
)
return info
def is_plural(string):
# A case that the inflect library does not handle
if string == "bus":
return False
# singular_noun returns False if the word is already singular (otherwise it returns the singular form)
return p.singular_noun(string) is not False
if __name__ == "__main__":
# Example:
# python eval_model_outputs.py --pred model_outputs_cache/dam_3b_v1.json --base-url "http://localhost:9100/v1"
parser = argparse.ArgumentParser(description="Evaluate model outputs")
parser.add_argument(
"--pred", type=str, help="Path to the prediction JSON file", required=True
)
parser.add_argument(
"--qa",
type=str,
help="Path to the reference QA file",
default="evaluation/DLC-Bench/annotations/qa.json",
)
parser.add_argument(
"--class-names",
type=str,
help="Path to the class names JSON file",
default="evaluation/DLC-Bench/annotations/class_names.json",
)
parser.add_argument(
"--default-prediction",
type=str,
default=None,
help="Default prediction if key is not present in the prediction file",
)
parser.add_argument(
"--api-call-limit", type=int, default=1000, help="API call limit"
)
parser.add_argument(
"--api-key", type=str, default=None, help="Path to the OpenAI API key file"
)
parser.add_argument(
"--suffix", type=str, default="", help="Suffix for the evaluation file"
)
parser.add_argument("--model", type=str, default="llama3.1-8b", help="Model name")
parser.add_argument("--verbose", action="store_true", help="Enable verbose mode")
parser.add_argument(
"--quiet", action="store_true", help="Enable quiet mode (result only)"
)
parser.add_argument("--csv", action="store_true", help="Output results as CSV only")
parser.add_argument(
"--base-url",
type=str,
default="http://localhost:8007/v1",
help="Base URL for the API call",
)
args = parser.parse_args()
always_print = print
if args.quiet:
print = lambda *args, **kwargs: None
# v3 is from v2.1
eval_file = os.path.splitext(args.pred)[0] + f"_eval{args.suffix}.json"
eval_results = {}
if False:
assert not os.path.exists(eval_file), f"Evaluation file exists at {eval_file}"
else:
if os.path.exists(eval_file):
print(f"Loading existing evaluation data from {eval_file}")
try:
with open(eval_file) as f:
eval_results = json.load(f)
except Exception as e:
always_print(f"Error loading evaluation data {eval_file}: {e}")
raise e
if args.api_key:
with open(args.api_key) as f:
client = OpenAI(api_key=f.read().strip(), base_url=args.base_url)
else:
client = OpenAI(api_key="sk-abc123", base_url=args.base_url)
with open(args.pred) as f:
data_pred = json.load(f)
with open(args.qa) as f:
data_qa = json.load(f)
with open(args.class_names) as f:
data_class_names = json.load(f)
scores = {}
scores_pos = {}
scores_neg = {}
keys = list(data_qa.keys())
p = inflect.engine()
print(f"Using model {args.model}")
missing_key_count = 0
for key in tqdm(keys, disable=args.quiet):
key = str(key)
if key in eval_results:
if args.verbose:
print(f"Skipping {key}")
response_override = eval_results[key]["response"]
else:
response_override = None
if key not in data_pred:
if args.default_prediction is None:
raise ValueError(
f"Key {key} not found in prediction data, and no default prediction provided"
)
else:
print(
f"Key {key} not found in prediction data, using default prediction {args.default_prediction}"
)
pred_value = args.default_prediction
missing_key_count += 1
elif data_pred[key].startswith("Error:"):
if args.default_prediction is None:
raise ValueError(
f"Key {key} has an error in prediction data, and no default prediction provided: {data_pred[key]}"
)
else:
print(
f"Key {key} has an error in prediction: {data_pred[key]}, using default prediction {args.default_prediction}"
)
pred_value = args.default_prediction
missing_key_count += 1
else:
pred_value = data_pred[key]
# print(f"Evaluating {key}")
class_name = data_class_names[key]
if is_plural(class_name):
recognition_question = f"Is it likely that the objects in the description are {class_name} or objects of a similar type? Again, It does not have to be an exact match."
else:
recognition_question = f"Is it likely that the object in the description is {p.a(class_name)} or an object of a similar type? Again, It does not have to be an exact match."
recognition_question_dict = {
"question": recognition_question,
"choices": [("Yes", "correct"), ("No", "incorrect")],
"type": "recognition",
}
# Add the recognition question to the beginning of the list
question_dicts = [recognition_question_dict, *data_qa[key]]
info = evaluate(
question_dicts=question_dicts,
pred_caption=pred_value,
model=args.model,
temperature=0.0,
max_tokens=300,
response_override=response_override,
key=key,
verbose=args.verbose,
)
score = info["score"]
scores[key] = score
scores_pos[key] = info["score_pos"]
scores_neg[key] = info["score_neg"]
eval_results[key] = {"pred": pred_value, **info}
if args.verbose:
print(f"Score: {score}")
with open(eval_file, "w") as f:
json.dump(eval_results, f, indent=4)
avg_score_pos = sum(scores_pos.values()) / len(scores_pos)
scores_neg_valid_only = [item for item in scores_neg.values() if item is not None]
avg_score_neg = sum(scores_neg_valid_only) / len(scores_neg_valid_only)
if args.csv:
# Print comma-separated values directly to stdout
always_print(
f"{avg_score_pos:.3f},{avg_score_neg:.3f},{(avg_score_pos + avg_score_neg) / 2:.3f}"
)
else:
always_print(f"Result for {args.pred}")
always_print(f"Average Positive Score: {avg_score_pos:.3f}")
always_print(f"Average Negative Score: {avg_score_neg:.3f}")
always_print(
f"Average of Positive and Negative Scores: {(avg_score_pos + avg_score_neg) / 2:.3f}"
)
always_print(
f"Summary (Pos\tNeg\tAvg(Pos, Neg)):\t{avg_score_pos:.3f},\t{avg_score_neg:.3f},\t{(avg_score_pos + avg_score_neg) / 2:.3f}"
)
print(f"QA Scores: {scores}")
if missing_key_count:
print(
f"Note: Missing {missing_key_count} keys, using default prediction {args.default_prediction}"
)
eval_results["avg_pos"] = avg_score_pos
eval_results["avg_neg"] = avg_score_neg
with open(eval_file, "w") as f:
json.dump(eval_results, f, indent=4)
print(f"Evaluation data saved to {eval_file}")
|