File size: 5,097 Bytes
46861c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# --------------------------------------------------------
# Copyright (2025) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License")
# Grasp Any Region Project
# Written by Haochen Wang
# --------------------------------------------------------

import argparse
import json
import os

import numpy as np
import torch
from PIL import Image
from pycocotools import mask as mask_utils
from pycocotools.coco import COCO
from tqdm import tqdm
from transformers import AutoModel, AutoProcessor, GenerationConfig

from evaluation.eval_dataset import SingleRegionCaptionDataset

TORCH_DTYPE_MAP = dict(fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32)


def parse_args():
    parser = argparse.ArgumentParser(
        description="Inference of Grasp Any Region models on DLC-Bench."
    )

    parser.add_argument(
        "--model_name_or_path",
        help="HF model name or path",
        default="HaochenWang/GAR-1B",
    )
    parser.add_argument(
        "--cache_name",
        help="cache name to save model outputs.",
        default="gar_1b",
    )
    parser.add_argument(
        "--data_type",
        help="data dtype",
        type=str,
        choices=["fp16", "bf16", "fp32"],
        default="bf16",
    )
    parser.add_argument(
        "--anno_file",
        help="path to the annotation file.",
        default="evaluation/DLC-Bench/annotations/annotations.json",
    )
    parser.add_argument(
        "--image_folder",
        help="the folder of images",
        default="evaluation/DLC-Bench/annotations",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=0,
        help="Random seed for reproducible text generation",
    )
    args = parser.parse_args()
    return args


def select_ann(coco, img_id, area_min=None, area_max=None):
    cat_ids = coco.getCatIds()
    ann_ids = coco.getAnnIds(imgIds=[img_id], catIds=cat_ids, iscrowd=None)

    if area_min is not None:
        ann_ids = [
            ann_id for ann_id in ann_ids if coco.anns[ann_id]["area"] >= area_min
        ]

    if area_max is not None:
        ann_ids = [
            ann_id for ann_id in ann_ids if coco.anns[ann_id]["area"] <= area_max
        ]

    return ann_ids


def main():
    args = parse_args()
    data_dtype = TORCH_DTYPE_MAP[args.data_type]
    torch.manual_seed(args.seed)

    # init ditribution for dispatch_modules in LLM
    torch.cuda.set_device(0)
    torch.distributed.init_process_group(backend="nccl")

    # build HF model
    model = AutoModel.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
        torch_dtype=data_dtype,
    )
    model.cuda()
    model.eval()

    processor = AutoProcessor.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
    )
    model_outputs = {}
    cache_name = args.cache_name

    # This coco instance is actually an o365 subset. This is for code reuse.
    coco = COCO(args.anno_file)
    img_ids = list(coco.imgs.keys())
    num_anns = len(coco.anns)
    pbar = tqdm(total=num_anns)

    for img_id in img_ids:
        ann_ids = select_ann(coco, img_id)
        img_info = coco.loadImgs(img_id)[0]

        for i, ann_id in enumerate(ann_ids):
            if ann_id in model_outputs.keys():
                pbar.update(1)
                continue

            anns = coco.loadAnns([ann_id])
            mask = coco.annToMask(anns[0])

            img_path = os.path.join(args.image_folder, "images", img_info["file_name"])
            img = Image.open(img_path)

            prompt_number = model.config.prompt_numbers
            prompt_tokens = [f"<Prompt{i_p}>" for i_p in range(prompt_number)] + [
                "<NO_Prompt>"
            ]
            dataset = SingleRegionCaptionDataset(
                image=img,
                mask=mask,
                processor=processor,
                prompt_number=prompt_number,
                visual_prompt_tokens=prompt_tokens,
                data_dtype=data_dtype,
            )
            data_sample = dataset[0]

            with torch.no_grad():
                generate_ids = model.generate(
                    **data_sample,
                    generation_config=GenerationConfig(
                        max_new_tokens=1024,
                        do_sample=False,
                        eos_token_id=processor.tokenizer.eos_token_id,
                        pad_token_id=processor.tokenizer.pad_token_id,
                    ),
                    return_dict=True,
                )

            outputs = processor.tokenizer.decode(
                generate_ids.sequences[0], skip_special_tokens=True
            ).strip()

            print(outputs)  # Print model output for this image

            model_outputs[ann_id] = outputs
            pbar.update(1)
    pbar.close()

    with open(f"evaluation/DLC-Bench/model_outputs/{cache_name}.json", "w") as file:
        json.dump(model_outputs, file, indent=4, ensure_ascii=False)

    print(f"Cache name: {cache_name}")


if __name__ == "__main__":
    main()