Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,234 Bytes
46861c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# Evaluation of GAR
## 1. GARBench
### 1.1 GARBench-Caption-Simple
First, perform inference, e.g., using GAR-8B.
```bash
torchrun --nproc-per-node=1 --master-port=9811 \
evaluation/GAR-Bench/inference.py \
--model_name_or_path HaochenWang/GAR-8B \
--anno_file evaluation/GAR-Bench/annotations/GAR-Bench-Caption-Simple.json \
--mode simple \
--cache_name ${CACHE_NAME} \
--data_type bf16 \
--seed 42
```
The generated descriptions will be saved to ```evaluation/GAR-Bench/model_outputs/${CACHE_NAME}_simple.json```
Next, perform evaluation (with images using GPT-4o).
```bash
export AZURE_OPENAI_ENDPOINT=YOUR_AZURE_OPENAI_ENDPOINT
export AZURE_OPENAI_KEY=YOUR_AZURE_OPENAI_KEY
python3 evaluation/GAR-Bench/eval_simple.py --pred evaluation/GAR-Bench/model_outputs/${CACHE_NAME}_simple.json
```
Reference cache (including model predictions and evaluation results) are stored in ```model_outputs/```. Due to the randomness during LLM-Judge, the final performance may slighly differ even with the same predicitons (even with ```temperature=0```).
To re-run the evaluation, you could change to your own ```CACHE_NAME```.
Reference results:
```bash
# GAR-1B
Accuracy: 0.5567010309278351
# GAR-8B
Accuracy: 0.6391752577319587
```
### 1.2 GARBench-Caption-Detailed
First, perform inference, e.g., using GAR-8B.
```bash
torchrun --nproc-per-node=1 --master-port=9811 \
evaluation/GAR-Bench/inference.py \
--model_name_or_path HaochenWang/GAR-8B \
--anno_file evaluation/GAR-Bench/annotations/GAR-Bench-Caption-Detailed.json \
--mode detailed \
--cache_name ${CACHE_NAME} \
--data_type bf16 \
--seed 42
```
The generated descriptions will be saved to ```evaluation/GAR-Bench/model_outputs/${CACHE_NAME}_detailed.json```
Next, perform evaluation (with images using GPT-4o).
```bash
export AZURE_OPENAI_ENDPOINT=YOUR_AZURE_OPENAI_ENDPOINT
export AZURE_OPENAI_KEY=YOUR_AZURE_OPENAI_KEY
python3 evaluation/GAR-Bench/eval_detailed.py --pred evaluation/GAR-Bench/model_outputs/${CACHE_NAME}_detailed.json
```
Reference cache (including model predictions and evaluation results) are stored in ```model_outputs/```. Due to the randomness during LLM-Judge, the final performance may slighly differ even with the same predicitons (even with ```temperature=0```).
To re-run the evaluation, you could change to your own ```CACHE_NAME```.
Reference results:
```bash
# GAR-1B
Accuracy: 0.6635514018691588
# GAR-8B
Accuracy: 0.6915887850467289
```
### 1.3 GARBench-VQA
Perform inference, e.g., using GAR-8B.
```bash
torchrun --nproc-per-node=1 --master-port=9811 \
evaluation/GAR-Bench/inference.py \
--model_name_or_path HaochenWang/GAR-8B \
--anno_file evaluation/GAR-Bench/annotations/GAR-Bench-VQA.json \
--mode vqa \
--cache_name ${CACHE_NAME} \
--data_type bf16 \
--seed 42
```
Reference cache (including model predictions and evaluation results) are stored in ```model_outputs/```.
To re-run the evaluation, you could change to your own ```CACHE_NAME```.
Reference results:
```
# GAR-1B
color: [34/69]=49.3
texture/pattern: [17/29]=58.6
mirror: [36/61]=59.0
ordering: [13/64]=20.3
material: [14/36]=38.9
shape: [32/64]=50.0
relation: [57/101]=56.4
=> overall: [203/424]=47.9
# GAR-8B
texture/pattern: [22/29]=75.9
material: [19/36]=52.8
mirror: [36/61]=59.0
relation: [66/101]=65.4
shape: [34/64]=53.1
ordering: [28/64]=43.8
color: [40/69]=58.0
=> overall: [245/424]=57.8
```
## 2. DLC-Bench
First, download images of DLC-Bench and put the ```images``` folder in the ```annotations``` directory:
```bash
cd evaluation/DLC-Bench/annotations
hf download nvidia/DLC-Bench --repo-type dataset --include "images/*" --exclude "*" --local-dir ./
```
The overall structure should be:
```bash
evaluation/DLC-Bench/annotations
βββ annotations.json
βββ class_names.json
βββ images
β βββ objects365_v2_*.jpg
βββ qa.json
```
Next, perform inference to obtain detailed descriptions, e.g., using GAR-8B.
```bash
torchrun --nproc-per-node=1 --master-port=8841 \
evaluation/DLC-Bench/inference.py \
--model_name_or_path HaochenWang/GAR-8B \
--cache_name ${CACHE_NAME} \
--data_type bf16 \
--seed 42
```
The generated descriptions will be saved to ```evaluation/DLC-Bench/model_outputs/${CACHE_NAME}.json```
Finally, perform evaluation (with images using GPT-4o or without images using Llama3.1-8B).
**Optional 1. Using GPT-4o *with* images (Recommended)**
```bash
export AZURE_OPENAI_ENDPOINT=YOUR_AZURE_OPENAI_ENDPOINT
export AZURE_OPENAI_KEY=YOUR_AZURE_OPENAI_KEY
python3 evaluation/DLC-Bench/eval_gpt_with_image.py --pred evaluation/DLC-Bench/model_outputs/${CACHE_NAME}.json
```
**Optional 2. Using Llama3.1-8B *without* images**
First, we need to serve Llama3.1-8B using vLLM.
```bash
bash evaluation/DLC-Bench/serve_judge.sh
```
Next, on the *same* node, run evaluation.
```bash
python3 eval_llama_without_image.py --pred ../model_outputs/${CACHE_NAME}.json --base_url http://localhost:8007/v1
```
For more details for the differences between these two evaluation settings, please refer to Appendix F of our paper.
Reference cache (including model predictions and evaluation results) are stored in ```model_outputs/```. Due to the randomness during LLM-Judge, the final performance may slighly differ even with the same predicitons (even with ```temperature=0```).
To re-run the evaluation, you could change to your own ```CACHE_NAME```.
Reference results:
```bash
# GAR-1B
# By GPT-4o (with images):
Summary (Pos Neg Avg(Pos, Neg)): 0.662, 0.880, 0.771
# By Llama3.1-8B (without images):
Summary (Pos Neg Avg(Pos, Neg)): 0.489, 0.870, 0.679
# GAR-8B
# By GPT-4o (with images):
Summary (Pos Neg Avg(Pos, Neg)): 0.680, 0.860, 0.770
# By Llama3.1-8B (without images):
Summary (Pos Neg Avg(Pos, Neg)): 0.502, 0.846, 0.674
```
## 3. Ferret-Bench
First, perform inference to obtain detailed descriptions, e.g., using GAR-8B.
```bash
torchrun --nproc-per-node=1 --master-port=8841 \
evaluation/Ferret-Bench/inference.py \
--model_name_or_path HaochenWang/GAR-8B \
--cache_name ${CACHE_NAME} \
--data_type bf16 \
--seed 42
```
The generated descriptions will be saved to ```evaluation/Ferret-Bench/model_outputs/${CACHE_NAME}.json```
Then, perform evaluation using GPT-4o.
```bash
export AZURE_OPENAI_ENDPOINT=YOUR_AZURE_OPENAI_ENDPOINT
export AZURE_OPENAI_KEY=YOUR_AZURE_OPENAI_KEY
cd evaluation/Ferret-Bench
bash eval.sh ${CACHE_NAME}
```
Reference model predictions are stored in ```model_outputs/```, and reference evaluation results are stored in ```gpt4_result/```. Due to the randomness during LLM-Judge, the final performance may slighly differ even with the same predicitons (even with ```temperature=0```).
To re-run the evaluation, you could change to your own ```CACHE_NAME```.
Reference results:
```bash
# GAR-1B
review_refer_desc
all 56.0
refer_desc 56.0
=================================
# GAR-8B
review_refer_desc
all 64.8
refer_desc 64.8
=================================
```
## 4. MDVP-Bench
First, perform inference to obtain detailed descriptions, e.g., using GAR-8B.
```bash
torchrun --nproc-per-node=1 --master-port=8841 \
evaluation/MDVP-Bench/inference.py \
--model_name_or_path HaochenWang/GAR-8B \
--cache_name ${CACHE_NAME} \
--data_type bf16 \
--seed 42
```
The generated descriptions will be saved to ```evaluation/MDVP-Bench/model_outputs/${CACHE_NAME}.json```
Then, perform evaluation using GPT-4o.
```bash
export AZURE_OPENAI_ENDPOINT=YOUR_AZURE_OPENAI_ENDPOINT
export AZURE_OPENAI_KEY=YOUR_AZURE_OPENAI_KEY
cd evaluation/MDVP-Bench
bash eval.sh model_outputs/${CACHE_NAME}.json
```
Reference model predictions are stored in ```model_outputs/```. Due to the randomness during LLM-Judge, the final performance may slighly differ even with the same predicitons (even with ```temperature=0```).
To re-run the evaluation, you could change to your own ```CACHE_NAME```.
Reference results:
```bash
# GAR-1B
android_detailed_caption_box 80.65
multipanel_detailed_caption_box 103.7
natural_detailed_caption_box 152.63
ocr_doc_detailed_caption_box 146.87
ocr_spotting_detailed_caption_box 152.38
web_detailed_caption_box 150.0
# Natural = natural_detailed_caption_box = 152.6
# OCR = (ocr_doc_detailed_caption_box + ocr_spotting_detailed_caption_box) / 2 = 149.6
# Multi-Panel = multipanel_detailed_caption_box = 103.7
# Sceenshot = (android_detailed_caption_box + web_detailed_caption_box) / 2 = 115.3
# GAR-8B
android_detailed_caption_box 113.79
multipanel_detailed_caption_box 117.24
natural_detailed_caption_box 178.57
ocr_doc_detailed_caption_box 138.10
ocr_spotting_detailed_caption_box 160.0
web_detailed_caption_box 132.26
# Natural = natural_detailed_caption_box = 178.6
# OCR = (ocr_doc_detailed_caption_box + ocr_spotting_detailed_caption_box) / 2 = 149.1
# Multi-Panel = multipanel_detailed_caption_box = 117.2
# Sceenshot = (android_detailed_caption_box + web_detailed_caption_box) / 2 = 123.0
``` |