File size: 6,550 Bytes
46861c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
Reference: https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/eval_gpt_review.py
"""

import argparse
import json
import os
import time

import cv2
import numpy as np
import openai
import requests
from paint_util import encode_image, paint_text_box, paint_text_point
from tqdm import tqdm

# Define Azure OpenAI details
model_name = "gpt-4o-2024-11-20"
max_tokens = 1000  # range: [1, 4095]

# Initialize the Azure client
client = openai.AzureOpenAI(
    azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
    api_key=os.getenv("AZURE_OPENAI_KEY"),
    api_version="2024-03-01-preview",
)


def get_eval(content: str, max_tokens: int):
    while True:
        try:
            messages = [
                {
                    "role": "system",
                    "content": "You are a helpful and precise assistant for checking the quality of the answer.",
                },
                {
                    "role": "user",
                    "content": content,
                },
            ]
            completion = client.chat.completions.create(
                model=model_name,
                messages=messages,
                max_tokens=max_tokens,
                temperature=0,
            )
            ret = completion.choices[0].message.content
            break

        except Exception as e:
            print(e)
        time.sleep(1)

    return ret


def parse_score(review):
    try:
        score_pair = review.split("\n")[0]
        score_pair = score_pair.replace(",", " ")
        sp = score_pair.split(" ")
        print("score_pair:", score_pair, sp)
        return [float(sp[0]), float(sp[1])]
    except Exception as e:
        print(e)
        print("error", review)
        return [-1, -1]


def main(args):
    phase = args.phase  # android_QA_box
    domain = phase.split("_box")[0]  # android_QA

    if "natural" in phase:
        context_str = "The image is a natural image."
    elif "ocr" in phase:
        context_str = "The image contains text, and the user wishes to know the content of the text."
    elif "screen" in phase:
        context_str = "The image is a screenshot from a mobile phone or webpage."
    elif "panel" in phase:
        context_str = "The image is a multi-panel figure."
    elif "android" in phase:
        context_str = "The image is an andriod screenshot."
    elif "web" in phase:
        context_str = "The image is a webpage screenshot."

    question_path = f"mdvp_for_gpt4v_eval/{phase}/question.json"
    args.question = question_path
    # parser.add_argument('--question', default=question_path, help='path to question file')

    answer_list_path = [
        f"mdvp_for_gpt4v_eval/{phase}/answer.json",
        f"mdvp_for_gpt4v_eval/{phase}/prediction.json",
    ]
    args.answer_list = answer_list_path
    # parser.add_argument('--answer-list', nargs='+', default=answer_list_path, help='gpt answer and model answer json files')

    rule_path = f"annotations/rule.json"
    args.rule = rule_path
    # parser.add_argument('--rule', default=rule_path ,help='gpt rule')

    f_q = json.load(open(os.path.expanduser(args.question)))
    f_ans1 = json.load(open(os.path.expanduser(args.answer_list[0])))
    f_ans2 = json.load(open(os.path.expanduser(args.answer_list[1])))
    rule_dict = json.load(open(os.path.expanduser(args.rule), "r"))

    os.makedirs("./result", exist_ok=True)

    if os.path.isfile(os.path.expanduser(args.output)):
        cur_reviews = [
            json.loads(line) for line in open(os.path.expanduser(args.output))
        ]
    else:
        cur_reviews = []

    review_file = open(f"{args.output}", "a")

    idx = 0
    for ques, ans1, ans2 in tqdm(zip(f_q, f_ans1, f_ans2)):
        # paint som mark on image
        image_name = ques["image"]
        image_path = f"data/{domain}/images/" + image_name
        # print("loading image from {}".format(image_path))
        image = cv2.imread(image_path)
        height, width, channels = image.shape
        (width, height)
        if "bbox" in ques["annotation"]:
            bbox = ques["annotation"]["bbox"]
            paint_image_path = paint_text_box(image_path, bbox)
            rule = rule_dict["box"]
        elif "points" in ques["annotation"]:
            points = ques["annotation"]["points"]
            paint_image_path = paint_text_point(image_path, points)
            rule = rule_dict["point"]
        base64_image = encode_image(paint_image_path)

        prompt = rule["prompt"]
        role = rule["role"]
        content_text = (
            f"[Context]\{context_str}\n\n"
            f'[Question]\n{ques["text"]}\n\n'
            f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
            f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
            f"[System]\n{prompt}\n\n"
        )

        content = [
            {
                "type": "text",
                "text": content_text,
            },
            {
                "type": "image_url",
                "image_url": {
                    "url": f"data:image/jpeg;base64,{base64_image}",
                    "detail": "high",
                },
            },
        ]

        cur_js = {
            "id": idx + 1,
            "question_id": ques["question_id"],
            "answer1_id": ans1.get("answer_id", ans1["question_id"]),
            "answer2_id": ans2.get("answer_id", ans2["question_id"]),
            "category": phase,
        }
        # pdb.set_trace()
        if idx >= len(cur_reviews):
            review = get_eval(content, args.max_tokens)
            # print(review)

            scores = parse_score(review)
            cur_js["content"] = review
            cur_js["tuple"] = scores
            cur_js["answer1"] = ans1["text"]
            cur_js["answer2"] = ans2["text"]
            review_file.write(json.dumps(cur_js) + "\n")
            review_file.flush()
        else:
            print(f"Skipping {idx} as we already have it.")

        idx += 1
        print(idx)

    review_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="ChatGPT-based QA evaluation.")
    parser.add_argument(
        "--phase", help="MDVP domain", type=str, required=True
    )  # android_QA_box
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=1024,
        help="maximum number of tokens produced in the output",
    )
    parser.add_argument(
        "--output", default=f"result/gpt_score.jsonl", help="output json dir"
    )
    args = parser.parse_args()
    main(args)