Spaces:
Paused
Paused
Commit
·
b7ab178
1
Parent(s):
add3cec
Update app.py
Browse files
app.py
CHANGED
|
@@ -466,79 +466,22 @@ def concatenate_images_vertical(image1, image2):
|
|
| 466 |
|
| 467 |
return new_image
|
| 468 |
|
| 469 |
-
def relate_anything(input_image, k):
|
| 470 |
-
logger.info(f'relate_anything_1_{input_image.size}_')
|
| 471 |
-
w, h = input_image.size
|
| 472 |
-
max_edge = 1500
|
| 473 |
-
if w > max_edge or h > max_edge:
|
| 474 |
-
ratio = max(w, h) / max_edge
|
| 475 |
-
new_size = (int(w / ratio), int(h / ratio))
|
| 476 |
-
input_image.thumbnail(new_size)
|
| 477 |
-
|
| 478 |
-
logger.info(f'relate_anything_2_')
|
| 479 |
-
# load image
|
| 480 |
-
pil_image = input_image.convert('RGBA')
|
| 481 |
-
image = np.array(input_image)
|
| 482 |
-
sam_masks = sam_mask_generator.generate(image)
|
| 483 |
-
filtered_masks = sort_and_deduplicate(sam_masks)
|
| 484 |
-
|
| 485 |
-
logger.info(f'relate_anything_3_')
|
| 486 |
-
feat_list = []
|
| 487 |
-
for fm in filtered_masks:
|
| 488 |
-
feat = torch.Tensor(fm['feat']).unsqueeze(0).unsqueeze(0).to(device)
|
| 489 |
-
feat_list.append(feat)
|
| 490 |
-
feat = torch.cat(feat_list, dim=1).to(device)
|
| 491 |
-
matrix_output, rel_triplets = ram_model.predict(feat)
|
| 492 |
-
|
| 493 |
-
logger.info(f'relate_anything_4_')
|
| 494 |
-
pil_image_list = []
|
| 495 |
-
for i, rel in enumerate(rel_triplets[:k]):
|
| 496 |
-
s,o,r = int(rel[0]),int(rel[1]),int(rel[2])
|
| 497 |
-
relation = relation_classes[r]
|
| 498 |
-
|
| 499 |
-
mask_image = Image.new('RGBA', pil_image.size, color=(0, 0, 0, 0))
|
| 500 |
-
mask_draw = ImageDraw.Draw(mask_image)
|
| 501 |
-
|
| 502 |
-
draw_selected_mask(filtered_masks[s]['segmentation'], mask_draw)
|
| 503 |
-
draw_object_mask(filtered_masks[o]['segmentation'], mask_draw)
|
| 504 |
-
|
| 505 |
-
current_pil_image = pil_image.copy()
|
| 506 |
-
current_pil_image.alpha_composite(mask_image)
|
| 507 |
-
|
| 508 |
-
title_image = create_title_image('Red', relation, 'Blue', current_pil_image.size[0])
|
| 509 |
-
concate_pil_image = concatenate_images_vertical(current_pil_image, title_image)
|
| 510 |
-
pil_image_list.append(concate_pil_image)
|
| 511 |
-
|
| 512 |
-
logger.info(f'relate_anything_5_{len(pil_image_list)}')
|
| 513 |
-
return pil_image_list
|
| 514 |
|
| 515 |
-
|
| 516 |
-
mask_source_segment = "type what to detect below"
|
| 517 |
-
|
| 518 |
-
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
| 519 |
-
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, cleaner_size_limit=1080):
|
| 520 |
-
if (task_type == 'relate anything'):
|
| 521 |
-
output_images = relate_anything(input_image['image'], num_relation)
|
| 522 |
-
return output_images, gr.Gallery.update(label='relate images')
|
| 523 |
|
| 524 |
text_prompt = text_prompt.strip()
|
| 525 |
-
if
|
| 526 |
-
|
| 527 |
-
return [], gr.Gallery.update(label='Detection prompt is not found!😂😂😂😂')
|
| 528 |
|
| 529 |
if input_image is None:
|
| 530 |
return [], gr.Gallery.update(label='Please upload a image!😂😂😂😂')
|
| 531 |
|
| 532 |
file_temp = int(time.time())
|
| 533 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}_[{text_prompt}]/[{inpaint_prompt}]___1_')
|
| 534 |
|
| 535 |
output_images = []
|
| 536 |
|
| 537 |
# load image
|
| 538 |
-
|
| 539 |
-
input_mask_pil = input_image['mask']
|
| 540 |
-
input_mask = np.array(input_mask_pil.convert("L"))
|
| 541 |
-
|
| 542 |
if isinstance(input_image, dict):
|
| 543 |
image_pil, image = load_image(input_image['image'].convert("RGB"))
|
| 544 |
input_img = input_image['image']
|
|
@@ -550,166 +493,38 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
| 550 |
|
| 551 |
size = image_pil.size
|
| 552 |
|
| 553 |
-
pred_dict = {
|
| 554 |
-
}
|
| 555 |
-
|
| 556 |
# run grounding dino model
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
)
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_')
|
| 586 |
-
if task_type == 'segment' or ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_segment):
|
| 587 |
-
image = np.array(input_img)
|
| 588 |
-
sam_predictor.set_image(image)
|
| 589 |
-
|
| 590 |
-
H, W = size[1], size[0]
|
| 591 |
-
for i in range(boxes_filt.size(0)):
|
| 592 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
| 593 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
| 594 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 595 |
-
|
| 596 |
-
boxes_filt = boxes_filt.to(sam_device)
|
| 597 |
-
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
| 598 |
-
|
| 599 |
-
masks, _, _, _ = sam_predictor.predict_torch(
|
| 600 |
-
point_coords = None,
|
| 601 |
-
point_labels = None,
|
| 602 |
-
boxes = transformed_boxes,
|
| 603 |
-
multimask_output = False,
|
| 604 |
-
)
|
| 605 |
-
# masks: [9, 1, 512, 512]
|
| 606 |
-
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
| 607 |
-
# draw output image
|
| 608 |
-
plt.figure(figsize=(10, 10))
|
| 609 |
-
plt.imshow(image)
|
| 610 |
-
for mask in masks:
|
| 611 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 612 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
| 613 |
-
show_box(box.cpu().numpy(), plt.gca(), label)
|
| 614 |
-
plt.axis('off')
|
| 615 |
-
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
|
| 616 |
-
plt.savefig(image_path, bbox_inches="tight")
|
| 617 |
-
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
| 618 |
-
os.remove(image_path)
|
| 619 |
-
output_images.append(segment_image_result)
|
| 620 |
-
|
| 621 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
|
| 622 |
-
if task_type == 'detection' or task_type == 'segment':
|
| 623 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
| 624 |
-
return pred_dict
|
| 625 |
-
elif task_type == 'inpainting' or task_type == 'remove':
|
| 626 |
-
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
|
| 627 |
-
task_type = 'remove'
|
| 628 |
-
|
| 629 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_4_')
|
| 630 |
-
if mask_source_radio == mask_source_draw:
|
| 631 |
-
mask_pil = input_mask_pil
|
| 632 |
-
mask = input_mask
|
| 633 |
-
else:
|
| 634 |
-
masks_ori = copy.deepcopy(masks)
|
| 635 |
-
if inpaint_mode == 'merge':
|
| 636 |
-
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
| 637 |
-
masks = torch.where(masks > 0, True, False)
|
| 638 |
-
mask = masks[0][0].cpu().numpy()
|
| 639 |
-
mask_pil = Image.fromarray(mask)
|
| 640 |
-
output_images.append(mask_pil.convert("RGB"))
|
| 641 |
-
|
| 642 |
-
if task_type == 'inpainting':
|
| 643 |
-
# inpainting pipeline
|
| 644 |
-
image_source_for_inpaint = image_pil.resize((512, 512))
|
| 645 |
-
image_mask_for_inpaint = mask_pil.resize((512, 512))
|
| 646 |
-
image_inpainting = sd_pipe(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]
|
| 647 |
-
else:
|
| 648 |
-
# remove from mask
|
| 649 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_5_')
|
| 650 |
-
if mask_source_radio == mask_source_segment:
|
| 651 |
-
mask_imgs = []
|
| 652 |
-
masks_shape = masks_ori.shape
|
| 653 |
-
boxes_filt_ori_array = boxes_filt_ori.numpy()
|
| 654 |
-
if inpaint_mode == 'merge':
|
| 655 |
-
extend_shape_0 = masks_shape[0]
|
| 656 |
-
extend_shape_1 = masks_shape[1]
|
| 657 |
-
else:
|
| 658 |
-
extend_shape_0 = 1
|
| 659 |
-
extend_shape_1 = 1
|
| 660 |
-
for i in range(extend_shape_0):
|
| 661 |
-
for j in range(extend_shape_1):
|
| 662 |
-
mask = masks_ori[i][j].cpu().numpy()
|
| 663 |
-
mask_pil = Image.fromarray(mask)
|
| 664 |
-
|
| 665 |
-
if remove_mode == 'segment':
|
| 666 |
-
useRectangle = False
|
| 667 |
-
else:
|
| 668 |
-
useRectangle = True
|
| 669 |
-
|
| 670 |
-
try:
|
| 671 |
-
remove_mask_extend = int(remove_mask_extend)
|
| 672 |
-
except:
|
| 673 |
-
remove_mask_extend = 10
|
| 674 |
-
mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"),
|
| 675 |
-
xywh_to_xyxy(torch.tensor(boxes_filt_ori_array[i]), size[0], size[1]),
|
| 676 |
-
extend_pixels=remove_mask_extend, useRectangle=useRectangle)
|
| 677 |
-
mask_imgs.append(mask_pil_exp)
|
| 678 |
-
mask_pil = mix_masks(mask_imgs)
|
| 679 |
-
output_images.append(mask_pil.convert("RGB"))
|
| 680 |
-
|
| 681 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_6_')
|
| 682 |
-
image_inpainting = lama_cleaner_process(np.array(image_pil), np.array(mask_pil.convert("L")), cleaner_size_limit)
|
| 683 |
-
# output_images.append(image_inpainting)
|
| 684 |
-
|
| 685 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_7_')
|
| 686 |
-
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
|
| 687 |
-
output_images.append(image_inpainting)
|
| 688 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
| 689 |
-
return output_images, gr.Gallery.update(label='result images')
|
| 690 |
-
else:
|
| 691 |
-
logger.info(f"task_type:{task_type} error!")
|
| 692 |
-
logger.info(f'run_anything_task_[{file_temp}]_9_9_')
|
| 693 |
-
return output_images, gr.Gallery.update(label='result images')
|
| 694 |
-
|
| 695 |
-
def change_radio_display(task_type, mask_source_radio):
|
| 696 |
-
text_prompt_visible = True
|
| 697 |
-
inpaint_prompt_visible = False
|
| 698 |
-
mask_source_radio_visible = False
|
| 699 |
-
num_relation_visible = False
|
| 700 |
-
if task_type == "inpainting":
|
| 701 |
-
inpaint_prompt_visible = True
|
| 702 |
-
if task_type == "inpainting" or task_type == "remove":
|
| 703 |
-
mask_source_radio_visible = True
|
| 704 |
-
if mask_source_radio == mask_source_draw:
|
| 705 |
-
text_prompt_visible = False
|
| 706 |
-
if task_type == "relate anything":
|
| 707 |
-
text_prompt_visible = False
|
| 708 |
-
num_relation_visible = True
|
| 709 |
-
return gr.Textbox.update(visible=text_prompt_visible), gr.Textbox.update(visible=inpaint_prompt_visible), gr.Radio.update(visible=mask_source_radio_visible), gr.Slider.update(visible=num_relation_visible)
|
| 710 |
|
| 711 |
if __name__ == "__main__":
|
| 712 |
-
parser = argparse.ArgumentParser("
|
| 713 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
| 714 |
parser.add_argument("--share", action="store_true", help="share the app")
|
| 715 |
args = parser.parse_args()
|
|
@@ -730,14 +545,9 @@ if __name__ == "__main__":
|
|
| 730 |
with gr.Row():
|
| 731 |
with gr.Column():
|
| 732 |
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")
|
| 733 |
-
|
| 734 |
-
label='Task type', visible=True)
|
| 735 |
-
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
|
| 736 |
-
value=mask_source_segment, label="Mask from",
|
| 737 |
-
visible=False)
|
| 738 |
text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty")
|
| 739 |
-
|
| 740 |
-
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False)
|
| 741 |
run_button = gr.Button(label="Run", visible=True)
|
| 742 |
with gr.Accordion("Advanced options", open=False) as advanced_options:
|
| 743 |
box_threshold = gr.Slider(
|
|
@@ -749,25 +559,11 @@ if __name__ == "__main__":
|
|
| 749 |
iou_threshold = gr.Slider(
|
| 750 |
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
|
| 751 |
)
|
| 752 |
-
inpaint_mode = gr.Radio(["merge", "first"], value="merge", label="inpaint_mode")
|
| 753 |
-
with gr.Row():
|
| 754 |
-
with gr.Column(scale=1):
|
| 755 |
-
remove_mode = gr.Radio(["segment", "rectangle"], value="segment", label='remove mode')
|
| 756 |
-
with gr.Column(scale=1):
|
| 757 |
-
remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10')
|
| 758 |
|
| 759 |
run_button.click(fn=run_anything_task, inputs=[
|
| 760 |
-
input_image, text_prompt,
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation])
|
| 764 |
-
|
| 765 |
-
DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>'
|
| 766 |
-
DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>'
|
| 767 |
-
DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>'
|
| 768 |
-
DESCRIPTION += f'Thanks for their excellent work.'
|
| 769 |
-
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \
|
| 770 |
-
<a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
| 771 |
gr.Markdown(DESCRIPTION)
|
| 772 |
|
| 773 |
computer_info()
|
|
|
|
| 466 |
|
| 467 |
return new_image
|
| 468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
|
| 470 |
+
def run_anything_task(input_image, text_prompt, box_threshold, text_threshold, iou_threshold, cleaner_size_limit=1080):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
text_prompt = text_prompt.strip()
|
| 473 |
+
if text_prompt == '':
|
| 474 |
+
return [], gr.Gallery.update(label='Detection prompt is not found!😂😂😂😂')
|
|
|
|
| 475 |
|
| 476 |
if input_image is None:
|
| 477 |
return [], gr.Gallery.update(label='Please upload a image!😂😂😂😂')
|
| 478 |
|
| 479 |
file_temp = int(time.time())
|
|
|
|
| 480 |
|
| 481 |
output_images = []
|
| 482 |
|
| 483 |
# load image
|
| 484 |
+
|
|
|
|
|
|
|
|
|
|
| 485 |
if isinstance(input_image, dict):
|
| 486 |
image_pil, image = load_image(input_image['image'].convert("RGB"))
|
| 487 |
input_img = input_image['image']
|
|
|
|
| 493 |
|
| 494 |
size = image_pil.size
|
| 495 |
|
|
|
|
|
|
|
|
|
|
| 496 |
# run grounding dino model
|
| 497 |
+
groundingdino_device = 'cpu'
|
| 498 |
+
if device != 'cpu':
|
| 499 |
+
try:
|
| 500 |
+
from groundingdino import _C
|
| 501 |
+
groundingdino_device = 'cuda:0'
|
| 502 |
+
except:
|
| 503 |
+
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!")
|
| 504 |
+
|
| 505 |
+
boxes_filt, pred_phrases = get_grounding_output(
|
| 506 |
+
groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device
|
| 507 |
+
)
|
| 508 |
+
if boxes_filt.size(0) == 0:
|
| 509 |
+
logger.info(f'run_anything_task_[{file_temp}]_[{text_prompt}]_1_[No objects detected, please try others.]_')
|
| 510 |
+
return [], gr.Gallery.update(label='No objects detected, please try others.😂😂😂😂')
|
| 511 |
+
boxes_filt_ori = copy.deepcopy(boxes_filt)
|
| 512 |
+
|
| 513 |
+
pred_dict = {
|
| 514 |
+
"boxes": boxes_filt,
|
| 515 |
+
"size": [size[1], size[0]], # H,W
|
| 516 |
+
"labels": pred_phrases,
|
| 517 |
+
}
|
| 518 |
+
|
| 519 |
+
image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0]
|
| 520 |
+
output_images.append(image_with_box)
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
return pred_dict
|
| 524 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 525 |
|
| 526 |
if __name__ == "__main__":
|
| 527 |
+
parser = argparse.ArgumentParser("VideoQuest segmentation module", add_help=True)
|
| 528 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
| 529 |
parser.add_argument("--share", action="store_true", help="share the app")
|
| 530 |
args = parser.parse_args()
|
|
|
|
| 545 |
with gr.Row():
|
| 546 |
with gr.Column():
|
| 547 |
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")
|
| 548 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty")
|
| 550 |
+
|
|
|
|
| 551 |
run_button = gr.Button(label="Run", visible=True)
|
| 552 |
with gr.Accordion("Advanced options", open=False) as advanced_options:
|
| 553 |
box_threshold = gr.Slider(
|
|
|
|
| 559 |
iou_threshold = gr.Slider(
|
| 560 |
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
|
| 561 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
|
| 563 |
run_button.click(fn=run_anything_task, inputs=[
|
| 564 |
+
input_image, text_prompt, box_threshold, text_threshold, iou_threshold], outputs=[gr.outputs.JSON()], show_progress=True, queue=True)
|
| 565 |
+
|
| 566 |
+
DESCRIPTION = f'### This space is used by the experimental VideoQuest game. <br> It is based on <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true">Grounded-Segment-Anything</a>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
gr.Markdown(DESCRIPTION)
|
| 568 |
|
| 569 |
computer_info()
|