Spaces:
Paused
Paused
Commit
·
db2cd8e
1
Parent(s):
af29e00
make it so that it only returns JSON
Browse files
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import warnings
|
| 3 |
warnings.filterwarnings('ignore')
|
| 4 |
|
|
@@ -27,7 +26,7 @@ import copy
|
|
| 27 |
|
| 28 |
import numpy as np
|
| 29 |
import torch
|
| 30 |
-
from PIL import Image
|
| 31 |
|
| 32 |
# Grounding DINO
|
| 33 |
import GroundingDINO.groundingdino.datasets.transforms as T
|
|
@@ -36,117 +35,6 @@ from GroundingDINO.groundingdino.util import box_ops
|
|
| 36 |
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
| 37 |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
| 38 |
|
| 39 |
-
import cv2
|
| 40 |
-
import numpy as np
|
| 41 |
-
import matplotlib.pyplot as plt
|
| 42 |
-
from lama_cleaner.model_manager import ModelManager
|
| 43 |
-
from lama_cleaner.schema import Config as lama_Config
|
| 44 |
-
|
| 45 |
-
# segment anything
|
| 46 |
-
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
|
| 47 |
-
|
| 48 |
-
# diffusers
|
| 49 |
-
import PIL
|
| 50 |
-
import requests
|
| 51 |
-
import torch
|
| 52 |
-
from io import BytesIO
|
| 53 |
-
from diffusers import StableDiffusionInpaintPipeline
|
| 54 |
-
from huggingface_hub import hf_hub_download
|
| 55 |
-
|
| 56 |
-
from utils import computer_info
|
| 57 |
-
# relate anything
|
| 58 |
-
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
|
| 59 |
-
from ram_train_eval import RamModel,RamPredictor
|
| 60 |
-
from mmengine.config import Config as mmengine_Config
|
| 61 |
-
from lama_cleaner.helper import (
|
| 62 |
-
load_img,
|
| 63 |
-
numpy_to_bytes,
|
| 64 |
-
resize_max_size,
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
| 68 |
-
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 69 |
-
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
| 70 |
-
sam_checkpoint = './sam_vit_h_4b8939.pth'
|
| 71 |
-
output_dir = "outputs"
|
| 72 |
-
device = 'cpu'
|
| 73 |
-
|
| 74 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 75 |
-
groundingdino_model = None
|
| 76 |
-
sam_device = None
|
| 77 |
-
sam_model = None
|
| 78 |
-
sam_predictor = None
|
| 79 |
-
sam_mask_generator = None
|
| 80 |
-
sd_pipe = None
|
| 81 |
-
lama_cleaner_model= None
|
| 82 |
-
ram_model = None
|
| 83 |
-
|
| 84 |
-
def get_sam_vit_h_4b8939():
|
| 85 |
-
if not os.path.exists('./sam_vit_h_4b8939.pth'):
|
| 86 |
-
logger.info(f"get sam_vit_h_4b8939.pth...")
|
| 87 |
-
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
|
| 88 |
-
print(f'wget sam_vit_h_4b8939.pth result = {result}')
|
| 89 |
-
|
| 90 |
-
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
| 91 |
-
args = SLConfig.fromfile(model_config_path)
|
| 92 |
-
model = build_model(args)
|
| 93 |
-
args.device = device
|
| 94 |
-
|
| 95 |
-
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 96 |
-
checkpoint = torch.load(cache_file, map_location=device)
|
| 97 |
-
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
| 98 |
-
print("Model loaded from {} \n => {}".format(cache_file, log))
|
| 99 |
-
_ = model.eval()
|
| 100 |
-
return model
|
| 101 |
-
|
| 102 |
-
def plot_boxes_to_image(image_pil, tgt):
|
| 103 |
-
H, W = tgt["size"]
|
| 104 |
-
boxes = tgt["boxes"]
|
| 105 |
-
labels = tgt["labels"]
|
| 106 |
-
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
| 107 |
-
|
| 108 |
-
draw = ImageDraw.Draw(image_pil)
|
| 109 |
-
mask = Image.new("L", image_pil.size, 0)
|
| 110 |
-
mask_draw = ImageDraw.Draw(mask)
|
| 111 |
-
|
| 112 |
-
# draw boxes and masks
|
| 113 |
-
for box, label in zip(boxes, labels):
|
| 114 |
-
# from 0..1 to 0..W, 0..H
|
| 115 |
-
box = box * torch.Tensor([W, H, W, H])
|
| 116 |
-
# from xywh to xyxy
|
| 117 |
-
box[:2] -= box[2:] / 2
|
| 118 |
-
box[2:] += box[:2]
|
| 119 |
-
# random color
|
| 120 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
| 121 |
-
# draw
|
| 122 |
-
x0, y0, x1, y1 = box
|
| 123 |
-
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
| 124 |
-
|
| 125 |
-
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
| 126 |
-
# draw.text((x0, y0), str(label), fill=color)
|
| 127 |
-
|
| 128 |
-
font = ImageFont.load_default()
|
| 129 |
-
if hasattr(font, "getbbox"):
|
| 130 |
-
bbox = draw.textbbox((x0, y0), str(label), font)
|
| 131 |
-
else:
|
| 132 |
-
w, h = draw.textsize(str(label), font)
|
| 133 |
-
bbox = (x0, y0, w + x0, y0 + h)
|
| 134 |
-
# bbox = draw.textbbox((x0, y0), str(label))
|
| 135 |
-
draw.rectangle(bbox, fill=color)
|
| 136 |
-
|
| 137 |
-
try:
|
| 138 |
-
font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
|
| 139 |
-
font_size = 36
|
| 140 |
-
new_font = ImageFont.truetype(font, font_size)
|
| 141 |
-
|
| 142 |
-
draw.text((x0+2, y0+2), str(label), font=new_font, fill="white")
|
| 143 |
-
except Exception as e:
|
| 144 |
-
pass
|
| 145 |
-
|
| 146 |
-
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
return image_pil, mask
|
| 150 |
|
| 151 |
def load_image(image_path):
|
| 152 |
# # load image
|
|
@@ -165,15 +53,6 @@ def load_image(image_path):
|
|
| 165 |
image, _ = transform(image_pil, None) # 3, h, w
|
| 166 |
return image_pil, image
|
| 167 |
|
| 168 |
-
def load_model(model_config_path, model_checkpoint_path, device):
|
| 169 |
-
args = SLConfig.fromfile(model_config_path)
|
| 170 |
-
args.device = device
|
| 171 |
-
model = build_model(args)
|
| 172 |
-
checkpoint = torch.load(model_checkpoint_path, map_location=device) #"cpu")
|
| 173 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
| 174 |
-
print(load_res)
|
| 175 |
-
_ = model.eval()
|
| 176 |
-
return model
|
| 177 |
|
| 178 |
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
| 179 |
caption = caption.lower()
|
|
@@ -210,500 +89,28 @@ def get_grounding_output(model, image, caption, box_threshold, text_threshold, w
|
|
| 210 |
|
| 211 |
return boxes_filt, pred_phrases
|
| 212 |
|
| 213 |
-
def show_mask(mask, ax, random_color=False):
|
| 214 |
-
if random_color:
|
| 215 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
| 216 |
-
else:
|
| 217 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
| 218 |
-
h, w = mask.shape[-2:]
|
| 219 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 220 |
-
ax.imshow(mask_image)
|
| 221 |
-
|
| 222 |
-
def show_box(box, ax, label):
|
| 223 |
-
x0, y0 = box[0], box[1]
|
| 224 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
| 225 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
| 226 |
-
ax.text(x0, y0, label)
|
| 227 |
-
|
| 228 |
-
def xywh_to_xyxy(box, sizeW, sizeH):
|
| 229 |
-
if isinstance(box, list):
|
| 230 |
-
box = torch.Tensor(box)
|
| 231 |
-
box = box * torch.Tensor([sizeW, sizeH, sizeW, sizeH])
|
| 232 |
-
box[:2] -= box[2:] / 2
|
| 233 |
-
box[2:] += box[:2]
|
| 234 |
-
box = box.numpy()
|
| 235 |
-
return box
|
| 236 |
-
|
| 237 |
-
def mask_extend(img, box, extend_pixels=10, useRectangle=True):
|
| 238 |
-
box[0] = int(box[0])
|
| 239 |
-
box[1] = int(box[1])
|
| 240 |
-
box[2] = int(box[2])
|
| 241 |
-
box[3] = int(box[3])
|
| 242 |
-
region = img.crop(tuple(box))
|
| 243 |
-
new_width = box[2] - box[0] + 2*extend_pixels
|
| 244 |
-
new_height = box[3] - box[1] + 2*extend_pixels
|
| 245 |
-
|
| 246 |
-
region_BILINEAR = region.resize((int(new_width), int(new_height)))
|
| 247 |
-
if useRectangle:
|
| 248 |
-
region_draw = ImageDraw.Draw(region_BILINEAR)
|
| 249 |
-
region_draw.rectangle((0, 0, new_width, new_height), fill=(255, 255, 255))
|
| 250 |
-
img.paste(region_BILINEAR, (int(box[0]-extend_pixels), int(box[1]-extend_pixels)))
|
| 251 |
-
return img
|
| 252 |
-
|
| 253 |
-
def mix_masks(imgs):
|
| 254 |
-
re_img = 1 - np.asarray(imgs[0].convert("1"))
|
| 255 |
-
for i in range(len(imgs)-1):
|
| 256 |
-
re_img = np.multiply(re_img, 1 - np.asarray(imgs[i+1].convert("1")))
|
| 257 |
-
re_img = 1 - re_img
|
| 258 |
-
return Image.fromarray(np.uint8(255*re_img))
|
| 259 |
-
|
| 260 |
-
def set_device():
|
| 261 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 262 |
-
print(f'device={device}')
|
| 263 |
-
|
| 264 |
-
def load_groundingdino_model():
|
| 265 |
-
# initialize groundingdino model
|
| 266 |
-
global groundingdino_model
|
| 267 |
-
logger.info(f"initialize groundingdino model...")
|
| 268 |
-
groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
| 269 |
-
|
| 270 |
-
def load_sam_model():
|
| 271 |
-
# initialize SAM
|
| 272 |
-
global sam_model, sam_predictor, sam_mask_generator, sam_device
|
| 273 |
-
logger.info(f"initialize SAM model...")
|
| 274 |
-
sam_device = device
|
| 275 |
-
sam_model = build_sam(checkpoint=sam_checkpoint).to(sam_device)
|
| 276 |
-
sam_predictor = SamPredictor(sam_model)
|
| 277 |
-
sam_mask_generator = SamAutomaticMaskGenerator(sam_model)
|
| 278 |
-
|
| 279 |
-
def load_sd_model():
|
| 280 |
-
# initialize stable-diffusion-inpainting
|
| 281 |
-
global sd_pipe
|
| 282 |
-
logger.info(f"initialize stable-diffusion-inpainting...")
|
| 283 |
-
sd_pipe = None
|
| 284 |
-
if os.environ.get('IS_MY_DEBUG') is None:
|
| 285 |
-
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 286 |
-
"runwayml/stable-diffusion-inpainting",
|
| 287 |
-
# revision="fp16",
|
| 288 |
-
# "stabilityai/stable-diffusion-2-inpainting",
|
| 289 |
-
torch_dtype=torch.float16,
|
| 290 |
-
)
|
| 291 |
-
sd_pipe = sd_pipe.to(device)
|
| 292 |
-
|
| 293 |
-
def load_lama_cleaner_model():
|
| 294 |
-
# initialize lama_cleaner
|
| 295 |
-
global lama_cleaner_model
|
| 296 |
-
logger.info(f"initialize lama_cleaner...")
|
| 297 |
-
|
| 298 |
-
lama_cleaner_model = ModelManager(
|
| 299 |
-
name='lama',
|
| 300 |
-
device='cpu', # device,
|
| 301 |
-
)
|
| 302 |
-
|
| 303 |
-
def lama_cleaner_process(image, mask, cleaner_size_limit=1080):
|
| 304 |
-
ori_image = image
|
| 305 |
-
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
|
| 306 |
-
# rotate image
|
| 307 |
-
ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
|
| 308 |
-
image = ori_image
|
| 309 |
-
|
| 310 |
-
original_shape = ori_image.shape
|
| 311 |
-
interpolation = cv2.INTER_CUBIC
|
| 312 |
-
|
| 313 |
-
size_limit = cleaner_size_limit
|
| 314 |
-
if size_limit == -1:
|
| 315 |
-
size_limit = max(image.shape)
|
| 316 |
-
else:
|
| 317 |
-
size_limit = int(size_limit)
|
| 318 |
-
|
| 319 |
-
config = lama_Config(
|
| 320 |
-
ldm_steps=25,
|
| 321 |
-
ldm_sampler='plms',
|
| 322 |
-
zits_wireframe=True,
|
| 323 |
-
hd_strategy='Original',
|
| 324 |
-
hd_strategy_crop_margin=196,
|
| 325 |
-
hd_strategy_crop_trigger_size=1280,
|
| 326 |
-
hd_strategy_resize_limit=2048,
|
| 327 |
-
prompt='',
|
| 328 |
-
use_croper=False,
|
| 329 |
-
croper_x=0,
|
| 330 |
-
croper_y=0,
|
| 331 |
-
croper_height=512,
|
| 332 |
-
croper_width=512,
|
| 333 |
-
sd_mask_blur=5,
|
| 334 |
-
sd_strength=0.75,
|
| 335 |
-
sd_steps=50,
|
| 336 |
-
sd_guidance_scale=7.5,
|
| 337 |
-
sd_sampler='ddim',
|
| 338 |
-
sd_seed=42,
|
| 339 |
-
cv2_flag='INPAINT_NS',
|
| 340 |
-
cv2_radius=5,
|
| 341 |
-
)
|
| 342 |
-
|
| 343 |
-
if config.sd_seed == -1:
|
| 344 |
-
config.sd_seed = random.randint(1, 999999999)
|
| 345 |
-
|
| 346 |
-
# logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
|
| 347 |
-
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
| 348 |
-
# logger.info(f"Resized image shape_1_: {image.shape}")
|
| 349 |
-
|
| 350 |
-
# logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
|
| 351 |
-
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
| 352 |
-
# logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
|
| 353 |
-
|
| 354 |
-
res_np_img = lama_cleaner_model(image, mask, config)
|
| 355 |
-
torch.cuda.empty_cache()
|
| 356 |
-
|
| 357 |
-
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
|
| 358 |
-
return image
|
| 359 |
-
|
| 360 |
-
class Ram_Predictor(RamPredictor):
|
| 361 |
-
def __init__(self, config, device='cpu'):
|
| 362 |
-
self.config = config
|
| 363 |
-
self.device = torch.device(device)
|
| 364 |
-
self._build_model()
|
| 365 |
-
|
| 366 |
-
def _build_model(self):
|
| 367 |
-
self.model = RamModel(**self.config.model).to(self.device)
|
| 368 |
-
if self.config.load_from is not None:
|
| 369 |
-
self.model.load_state_dict(torch.load(self.config.load_from, map_location=self.device))
|
| 370 |
-
self.model.train()
|
| 371 |
-
|
| 372 |
-
def load_ram_model():
|
| 373 |
-
# load ram model
|
| 374 |
-
global ram_model
|
| 375 |
-
model_path = "./checkpoints/ram_epoch12.pth"
|
| 376 |
-
ram_config = dict(
|
| 377 |
-
model=dict(
|
| 378 |
-
pretrained_model_name_or_path='bert-base-uncased',
|
| 379 |
-
load_pretrained_weights=False,
|
| 380 |
-
num_transformer_layer=2,
|
| 381 |
-
input_feature_size=256,
|
| 382 |
-
output_feature_size=768,
|
| 383 |
-
cls_feature_size=512,
|
| 384 |
-
num_relation_classes=56,
|
| 385 |
-
pred_type='attention',
|
| 386 |
-
loss_type='multi_label_ce',
|
| 387 |
-
),
|
| 388 |
-
load_from=model_path,
|
| 389 |
-
)
|
| 390 |
-
ram_config = mmengine_Config(ram_config)
|
| 391 |
-
ram_model = Ram_Predictor(ram_config, device)
|
| 392 |
-
|
| 393 |
-
# visualization
|
| 394 |
-
def draw_selected_mask(mask, draw):
|
| 395 |
-
color = (255, 0, 0, 153)
|
| 396 |
-
nonzero_coords = np.transpose(np.nonzero(mask))
|
| 397 |
-
for coord in nonzero_coords:
|
| 398 |
-
draw.point(coord[::-1], fill=color)
|
| 399 |
|
| 400 |
-
def
|
| 401 |
-
color = (0, 0, 255, 153)
|
| 402 |
-
nonzero_coords = np.transpose(np.nonzero(mask))
|
| 403 |
-
for coord in nonzero_coords:
|
| 404 |
-
draw.point(coord[::-1], fill=color)
|
| 405 |
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
color_red = (255, 0, 0)
|
| 409 |
-
color_black = (0, 0, 0)
|
| 410 |
-
color_blue = (0, 0, 255)
|
| 411 |
|
| 412 |
-
#
|
| 413 |
-
|
| 414 |
|
| 415 |
-
#
|
| 416 |
-
|
| 417 |
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
draw = ImageDraw.Draw(image)
|
| 426 |
-
|
| 427 |
-
word_spacing = font_size / 2
|
| 428 |
-
# Draw each word in the appropriate color
|
| 429 |
-
x_offset = word_spacing
|
| 430 |
-
draw.text((x_offset, 0), word1, color_red, font=font)
|
| 431 |
-
x_offset += font.getsize(word1)[0] + word_spacing
|
| 432 |
-
draw.text((x_offset, 0), word2, color_black, font=font)
|
| 433 |
-
x_offset += font.getsize(word2)[0] + word_spacing
|
| 434 |
-
draw.text((x_offset, 0), word3, color_blue, font=font)
|
| 435 |
-
|
| 436 |
-
word_sizes = [font.getsize(word) for word in [word1, word2, word3]]
|
| 437 |
-
total_width = sum([size[0] for size in word_sizes]) + word_spacing * 3
|
| 438 |
-
|
| 439 |
-
# Stop increasing font size if the image is within the desired width
|
| 440 |
-
if total_width <= width:
|
| 441 |
-
break
|
| 442 |
-
|
| 443 |
-
# Increase font size and reset the draw object
|
| 444 |
-
font_size -= 1
|
| 445 |
-
image = Image.new('RGB', (width, 50), (255, 255, 255))
|
| 446 |
-
font = ImageFont.truetype(font_path, font_size)
|
| 447 |
-
draw = None
|
| 448 |
-
except Exception as e:
|
| 449 |
-
pass
|
| 450 |
-
|
| 451 |
-
return image
|
| 452 |
-
|
| 453 |
-
def concatenate_images_vertical(image1, image2):
|
| 454 |
-
# Get the dimensions of the two images
|
| 455 |
-
width1, height1 = image1.size
|
| 456 |
-
width2, height2 = image2.size
|
| 457 |
-
|
| 458 |
-
# Create a new image with the combined height and the maximum width
|
| 459 |
-
new_image = Image.new('RGBA', (max(width1, width2), height1 + height2))
|
| 460 |
-
|
| 461 |
-
# Paste the first image at the top of the new image
|
| 462 |
-
new_image.paste(image1, (0, 0))
|
| 463 |
-
|
| 464 |
-
# Paste the second image below the first image
|
| 465 |
-
new_image.paste(image2, (0, height1))
|
| 466 |
-
|
| 467 |
-
return new_image
|
| 468 |
-
|
| 469 |
-
def relate_anything(input_image, k):
|
| 470 |
-
logger.info(f'relate_anything_1_{input_image.size}_')
|
| 471 |
-
w, h = input_image.size
|
| 472 |
-
max_edge = 1500
|
| 473 |
-
if w > max_edge or h > max_edge:
|
| 474 |
-
ratio = max(w, h) / max_edge
|
| 475 |
-
new_size = (int(w / ratio), int(h / ratio))
|
| 476 |
-
input_image.thumbnail(new_size)
|
| 477 |
-
|
| 478 |
-
logger.info(f'relate_anything_2_')
|
| 479 |
-
# load image
|
| 480 |
-
pil_image = input_image.convert('RGBA')
|
| 481 |
-
image = np.array(input_image)
|
| 482 |
-
sam_masks = sam_mask_generator.generate(image)
|
| 483 |
-
filtered_masks = sort_and_deduplicate(sam_masks)
|
| 484 |
-
|
| 485 |
-
logger.info(f'relate_anything_3_')
|
| 486 |
-
feat_list = []
|
| 487 |
-
for fm in filtered_masks:
|
| 488 |
-
feat = torch.Tensor(fm['feat']).unsqueeze(0).unsqueeze(0).to(device)
|
| 489 |
-
feat_list.append(feat)
|
| 490 |
-
feat = torch.cat(feat_list, dim=1).to(device)
|
| 491 |
-
matrix_output, rel_triplets = ram_model.predict(feat)
|
| 492 |
-
|
| 493 |
-
logger.info(f'relate_anything_4_')
|
| 494 |
-
pil_image_list = []
|
| 495 |
-
for i, rel in enumerate(rel_triplets[:k]):
|
| 496 |
-
s,o,r = int(rel[0]),int(rel[1]),int(rel[2])
|
| 497 |
-
relation = relation_classes[r]
|
| 498 |
-
|
| 499 |
-
mask_image = Image.new('RGBA', pil_image.size, color=(0, 0, 0, 0))
|
| 500 |
-
mask_draw = ImageDraw.Draw(mask_image)
|
| 501 |
-
|
| 502 |
-
draw_selected_mask(filtered_masks[s]['segmentation'], mask_draw)
|
| 503 |
-
draw_object_mask(filtered_masks[o]['segmentation'], mask_draw)
|
| 504 |
-
|
| 505 |
-
current_pil_image = pil_image.copy()
|
| 506 |
-
current_pil_image.alpha_composite(mask_image)
|
| 507 |
-
|
| 508 |
-
title_image = create_title_image('Red', relation, 'Blue', current_pil_image.size[0])
|
| 509 |
-
concate_pil_image = concatenate_images_vertical(current_pil_image, title_image)
|
| 510 |
-
pil_image_list.append(concate_pil_image)
|
| 511 |
-
|
| 512 |
-
logger.info(f'relate_anything_5_{len(pil_image_list)}')
|
| 513 |
-
return pil_image_list
|
| 514 |
-
|
| 515 |
-
mask_source_draw = "draw a mask on input image"
|
| 516 |
-
mask_source_segment = "type what to detect below"
|
| 517 |
-
|
| 518 |
-
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
| 519 |
-
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, cleaner_size_limit=1080):
|
| 520 |
-
if (task_type == 'relate anything'):
|
| 521 |
-
output_images = relate_anything(input_image['image'], num_relation)
|
| 522 |
-
return output_images, gr.Gallery.update(label='relate images')
|
| 523 |
-
|
| 524 |
-
text_prompt = text_prompt.strip()
|
| 525 |
-
if not ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw):
|
| 526 |
-
if text_prompt == '':
|
| 527 |
-
return [], gr.Gallery.update(label='Detection prompt is not found!😂😂😂😂')
|
| 528 |
-
|
| 529 |
-
if input_image is None:
|
| 530 |
-
return [], gr.Gallery.update(label='Please upload a image!😂😂😂😂')
|
| 531 |
-
|
| 532 |
-
file_temp = int(time.time())
|
| 533 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}_[{text_prompt}]/[{inpaint_prompt}]___1_')
|
| 534 |
-
|
| 535 |
-
output_images = []
|
| 536 |
-
|
| 537 |
-
# load image
|
| 538 |
-
if mask_source_radio == mask_source_draw:
|
| 539 |
-
input_mask_pil = input_image['mask']
|
| 540 |
-
input_mask = np.array(input_mask_pil.convert("L"))
|
| 541 |
-
|
| 542 |
-
if isinstance(input_image, dict):
|
| 543 |
-
image_pil, image = load_image(input_image['image'].convert("RGB"))
|
| 544 |
-
input_img = input_image['image']
|
| 545 |
-
output_images.append(input_image['image'])
|
| 546 |
-
else:
|
| 547 |
-
image_pil, image = load_image(input_image.convert("RGB"))
|
| 548 |
-
input_img = input_image
|
| 549 |
-
output_images.append(input_image)
|
| 550 |
-
|
| 551 |
-
size = image_pil.size
|
| 552 |
-
|
| 553 |
-
# run grounding dino model
|
| 554 |
-
if (task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw:
|
| 555 |
-
pass
|
| 556 |
-
else:
|
| 557 |
-
groundingdino_device = 'cpu'
|
| 558 |
-
if device != 'cpu':
|
| 559 |
-
try:
|
| 560 |
-
from groundingdino import _C
|
| 561 |
-
groundingdino_device = 'cuda:0'
|
| 562 |
-
except:
|
| 563 |
-
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!")
|
| 564 |
-
|
| 565 |
-
boxes_filt, pred_phrases = get_grounding_output(
|
| 566 |
-
groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device
|
| 567 |
-
)
|
| 568 |
-
if boxes_filt.size(0) == 0:
|
| 569 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1_[No objects detected, please try others.]_')
|
| 570 |
-
return [], gr.Gallery.update(label='No objects detected, please try others.😂😂😂😂')
|
| 571 |
-
boxes_filt_ori = copy.deepcopy(boxes_filt)
|
| 572 |
-
|
| 573 |
-
pred_dict = {
|
| 574 |
-
"boxes": boxes_filt,
|
| 575 |
-
"size": [size[1], size[0]], # H,W
|
| 576 |
-
"labels": pred_phrases,
|
| 577 |
-
}
|
| 578 |
-
|
| 579 |
-
image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0]
|
| 580 |
-
output_images.append(image_with_box)
|
| 581 |
-
|
| 582 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_')
|
| 583 |
-
if task_type == 'segment' or ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_segment):
|
| 584 |
-
image = np.array(input_img)
|
| 585 |
-
sam_predictor.set_image(image)
|
| 586 |
-
|
| 587 |
-
H, W = size[1], size[0]
|
| 588 |
-
for i in range(boxes_filt.size(0)):
|
| 589 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
| 590 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
| 591 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 592 |
-
|
| 593 |
-
boxes_filt = boxes_filt.to(sam_device)
|
| 594 |
-
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
| 595 |
-
|
| 596 |
-
masks, _, _, _ = sam_predictor.predict_torch(
|
| 597 |
-
point_coords = None,
|
| 598 |
-
point_labels = None,
|
| 599 |
-
boxes = transformed_boxes,
|
| 600 |
-
multimask_output = False,
|
| 601 |
-
)
|
| 602 |
-
# masks: [9, 1, 512, 512]
|
| 603 |
-
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
| 604 |
-
# draw output image
|
| 605 |
-
plt.figure(figsize=(10, 10))
|
| 606 |
-
plt.imshow(image)
|
| 607 |
-
for mask in masks:
|
| 608 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 609 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
| 610 |
-
show_box(box.cpu().numpy(), plt.gca(), label)
|
| 611 |
-
plt.axis('off')
|
| 612 |
-
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
|
| 613 |
-
plt.savefig(image_path, bbox_inches="tight")
|
| 614 |
-
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
| 615 |
-
os.remove(image_path)
|
| 616 |
-
output_images.append(segment_image_result)
|
| 617 |
-
|
| 618 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
|
| 619 |
-
if task_type == 'detection' or task_type == 'segment':
|
| 620 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
| 621 |
-
return output_images, gr.Gallery.update(label='result images')
|
| 622 |
-
elif task_type == 'inpainting' or task_type == 'remove':
|
| 623 |
-
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
|
| 624 |
-
task_type = 'remove'
|
| 625 |
-
|
| 626 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_4_')
|
| 627 |
-
if mask_source_radio == mask_source_draw:
|
| 628 |
-
mask_pil = input_mask_pil
|
| 629 |
-
mask = input_mask
|
| 630 |
-
else:
|
| 631 |
-
masks_ori = copy.deepcopy(masks)
|
| 632 |
-
if inpaint_mode == 'merge':
|
| 633 |
-
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
| 634 |
-
masks = torch.where(masks > 0, True, False)
|
| 635 |
-
mask = masks[0][0].cpu().numpy()
|
| 636 |
-
mask_pil = Image.fromarray(mask)
|
| 637 |
-
output_images.append(mask_pil.convert("RGB"))
|
| 638 |
-
|
| 639 |
-
if task_type == 'inpainting':
|
| 640 |
-
# inpainting pipeline
|
| 641 |
-
image_source_for_inpaint = image_pil.resize((512, 512))
|
| 642 |
-
image_mask_for_inpaint = mask_pil.resize((512, 512))
|
| 643 |
-
image_inpainting = sd_pipe(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]
|
| 644 |
-
else:
|
| 645 |
-
# remove from mask
|
| 646 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_5_')
|
| 647 |
-
if mask_source_radio == mask_source_segment:
|
| 648 |
-
mask_imgs = []
|
| 649 |
-
masks_shape = masks_ori.shape
|
| 650 |
-
boxes_filt_ori_array = boxes_filt_ori.numpy()
|
| 651 |
-
if inpaint_mode == 'merge':
|
| 652 |
-
extend_shape_0 = masks_shape[0]
|
| 653 |
-
extend_shape_1 = masks_shape[1]
|
| 654 |
-
else:
|
| 655 |
-
extend_shape_0 = 1
|
| 656 |
-
extend_shape_1 = 1
|
| 657 |
-
for i in range(extend_shape_0):
|
| 658 |
-
for j in range(extend_shape_1):
|
| 659 |
-
mask = masks_ori[i][j].cpu().numpy()
|
| 660 |
-
mask_pil = Image.fromarray(mask)
|
| 661 |
-
|
| 662 |
-
if remove_mode == 'segment':
|
| 663 |
-
useRectangle = False
|
| 664 |
-
else:
|
| 665 |
-
useRectangle = True
|
| 666 |
-
|
| 667 |
-
try:
|
| 668 |
-
remove_mask_extend = int(remove_mask_extend)
|
| 669 |
-
except:
|
| 670 |
-
remove_mask_extend = 10
|
| 671 |
-
mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"),
|
| 672 |
-
xywh_to_xyxy(torch.tensor(boxes_filt_ori_array[i]), size[0], size[1]),
|
| 673 |
-
extend_pixels=remove_mask_extend, useRectangle=useRectangle)
|
| 674 |
-
mask_imgs.append(mask_pil_exp)
|
| 675 |
-
mask_pil = mix_masks(mask_imgs)
|
| 676 |
-
output_images.append(mask_pil.convert("RGB"))
|
| 677 |
-
|
| 678 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_6_')
|
| 679 |
-
image_inpainting = lama_cleaner_process(np.array(image_pil), np.array(mask_pil.convert("L")), cleaner_size_limit)
|
| 680 |
-
# output_images.append(image_inpainting)
|
| 681 |
|
| 682 |
-
|
| 683 |
-
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
|
| 684 |
-
output_images.append(image_inpainting)
|
| 685 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
|
| 686 |
-
return output_images, gr.Gallery.update(label='result images')
|
| 687 |
-
else:
|
| 688 |
-
logger.info(f"task_type:{task_type} error!")
|
| 689 |
-
logger.info(f'run_anything_task_[{file_temp}]_9_9_')
|
| 690 |
-
return output_images, gr.Gallery.update(label='result images')
|
| 691 |
|
| 692 |
-
def change_radio_display(task_type, mask_source_radio):
|
| 693 |
-
text_prompt_visible = True
|
| 694 |
-
inpaint_prompt_visible = False
|
| 695 |
-
mask_source_radio_visible = False
|
| 696 |
-
num_relation_visible = False
|
| 697 |
-
if task_type == "inpainting":
|
| 698 |
-
inpaint_prompt_visible = True
|
| 699 |
-
if task_type == "inpainting" or task_type == "remove":
|
| 700 |
-
mask_source_radio_visible = True
|
| 701 |
-
if mask_source_radio == mask_source_draw:
|
| 702 |
-
text_prompt_visible = False
|
| 703 |
-
if task_type == "relate anything":
|
| 704 |
-
text_prompt_visible = False
|
| 705 |
-
num_relation_visible = True
|
| 706 |
-
return gr.Textbox.update(visible=text_prompt_visible), gr.Textbox.update(visible=inpaint_prompt_visible), gr.Radio.update(visible=mask_source_radio_visible), gr.Slider.update(visible=num_relation_visible)
|
| 707 |
|
| 708 |
if __name__ == "__main__":
|
| 709 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
|
@@ -712,64 +119,28 @@ if __name__ == "__main__":
|
|
| 712 |
args = parser.parse_args()
|
| 713 |
print(f'args = {args}')
|
| 714 |
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False)
|
| 738 |
-
run_button = gr.Button(label="Run", visible=True)
|
| 739 |
-
with gr.Accordion("Advanced options", open=False) as advanced_options:
|
| 740 |
-
box_threshold = gr.Slider(
|
| 741 |
-
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
|
| 742 |
-
)
|
| 743 |
-
text_threshold = gr.Slider(
|
| 744 |
-
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
| 745 |
-
)
|
| 746 |
-
iou_threshold = gr.Slider(
|
| 747 |
-
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
|
| 748 |
-
)
|
| 749 |
-
inpaint_mode = gr.Radio(["merge", "first"], value="merge", label="inpaint_mode")
|
| 750 |
-
with gr.Row():
|
| 751 |
-
with gr.Column(scale=1):
|
| 752 |
-
remove_mode = gr.Radio(["segment", "rectangle"], value="segment", label='remove mode')
|
| 753 |
-
with gr.Column(scale=1):
|
| 754 |
-
remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10')
|
| 755 |
-
|
| 756 |
-
with gr.Column():
|
| 757 |
-
image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", visible=True
|
| 758 |
-
).style(preview=True, columns=[5], object_fit="scale-down", height="auto")
|
| 759 |
-
|
| 760 |
-
run_button.click(fn=run_anything_task, inputs=[
|
| 761 |
-
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation], outputs=[image_gallery, image_gallery], show_progress=True, queue=True)
|
| 762 |
-
|
| 763 |
-
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation])
|
| 764 |
-
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation])
|
| 765 |
-
|
| 766 |
-
DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>'
|
| 767 |
-
DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>'
|
| 768 |
-
DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>'
|
| 769 |
-
DESCRIPTION += f'Thanks for their excellent work.'
|
| 770 |
-
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \
|
| 771 |
-
<a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
| 772 |
-
gr.Markdown(DESCRIPTION)
|
| 773 |
|
| 774 |
-
|
| 775 |
-
|
|
|
|
|
|
|
| 1 |
import warnings
|
| 2 |
warnings.filterwarnings('ignore')
|
| 3 |
|
|
|
|
| 26 |
|
| 27 |
import numpy as np
|
| 28 |
import torch
|
| 29 |
+
from PIL import Image
|
| 30 |
|
| 31 |
# Grounding DINO
|
| 32 |
import GroundingDINO.groundingdino.datasets.transforms as T
|
|
|
|
| 35 |
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
| 36 |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
def load_image(image_path):
|
| 40 |
# # load image
|
|
|
|
| 53 |
image, _ = transform(image_pil, None) # 3, h, w
|
| 54 |
return image_pil, image
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
| 58 |
caption = caption.lower()
|
|
|
|
| 89 |
|
| 90 |
return boxes_filt, pred_phrases
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
def run_inference(input_image, text_prompt, box_threshold, text_threshold, config_file, ckpt_repo_id, ckpt_filenmae):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
# Load the Grounding DINO model
|
| 96 |
+
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
# Load the input image
|
| 99 |
+
image_pil, image = load_image(input_image)
|
| 100 |
|
| 101 |
+
# Run the object detection and grounding model
|
| 102 |
+
boxes, labels = get_grounding_output(model, image, text_prompt, box_threshold, text_threshold)
|
| 103 |
|
| 104 |
+
# Convert the boxes and labels to a JSON format
|
| 105 |
+
result = []
|
| 106 |
+
for box, label in zip(boxes, labels):
|
| 107 |
+
result.append({
|
| 108 |
+
"box": box.tolist(),
|
| 109 |
+
"label": label
|
| 110 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
if __name__ == "__main__":
|
| 116 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
|
|
|
| 119 |
args = parser.parse_args()
|
| 120 |
print(f'args = {args}')
|
| 121 |
|
| 122 |
+
model_config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
| 123 |
+
model_ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 124 |
+
model_ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
| 125 |
+
|
| 126 |
+
def inference_func(input_image, text_prompt):
|
| 127 |
+
result = run_inference(input_image, text_prompt, 0.3, 0.25, model_config_file, model_ckpt_repo_id, model_ckpt_filenmae)
|
| 128 |
+
return result
|
| 129 |
+
|
| 130 |
+
# Create the Gradio interface for the model
|
| 131 |
+
interface = gr.Interface(
|
| 132 |
+
fn=inference_func,
|
| 133 |
+
inputs=[
|
| 134 |
+
gr.inputs.Image(label="Input Image"),
|
| 135 |
+
gr.inputs.Textbox(label="Detection Prompt")
|
| 136 |
+
],
|
| 137 |
+
outputs=gr.outputs.Dataframe(),
|
| 138 |
+
title="Object Detection and Grounding",
|
| 139 |
+
description="A Gradio app to detect objects in an image and ground them to captions using Grounding DINO.",
|
| 140 |
+
server_name='0.0.0.0',
|
| 141 |
+
debug=args.debug,
|
| 142 |
+
share=args.share
|
| 143 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
+
# Launch the interface
|
| 146 |
+
interface.launch()
|